BG cover
Co-editors-in-chief:
Michael
 
Bahn
,
Katja
 
Fennel
,
S.W.A.
 
Naqvi
 &
Anja
 
Rammig
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of the interactions between the biological, chemical, and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere, and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual, and modelling approaches are welcome.
News
Press Release: Oxygen loss in the coastal Baltic Sea is "unprecedentedly severe" 05 Jul 2018

The Baltic Sea is home to some of the world's largest dead zones, areas of oxygen-starved waters where most marine animals can't survive. But while parts of this sea have long suffered from low oxygen levels, a new study by a team in Finland and Germany shows that oxygen loss in coastal areas over the past century is unprecedented in the last 1500 years. The research is published today in BG.

New Journal Impact Factors released 27 Jun 2018

The latest Journal Citation Reports® have been published by Clarivate Analytics.

Extended agreement with the Leibniz Association 03 May 2018

As of 1 May 2018 the centralized payment of article processing charges (APCs) with the Leibniz Association has been extended to 53 Leibniz Institutions participating in the Leibniz Association's Open Access Publishing Fund.

Recent articles

Highlight articles

As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world's remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.

Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang

In the ocean, the availability of nitrogen is one of the most influential factors controlling primary productivity. Biological N2 fixation, i.e., the reduction of atmospheric N2 gas to biologically available ammonium, constitutes the major source of new N for the surface ocean. In this article, we reveal exceptionally high rates of N2 fixation (among the highest over the world ocean) in the western tropical South Pacific, dominated by the cyanobacteria Trichodesmium.

Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster

Biological dinitrogen (N2) fixation provides the major source of new nitrogen (N) to the open ocean. Yet the fate of the diazotroph-derived N (DDN) in the planktonic food web is poorly understood. This study provides the first quantification of DDN release and transfer to phytoplankton, bacteria and zooplankton communities in open ocean waters, under contrasting N2 fixation activity and diversity

Mathieu Caffin, Hugo Berthelot, Véronique Cornet-Barthaux, Aude Barani, and Sophie Bonnet

The temperature sensitivity of soil carbon loss is a critical parameter for projecting future CO2. Isolating soil temperature response in the field is challenging due to difficulties isolating root and microbial respiration. We use a database of direct-warming soil carbon changes to generate a new global temperature sensitivity. Incorporating this into Earth system models reduces projected soil carbon. But it also shows that variation due to this parameter is as high as all other causes.

Katherine Todd-Brown, Bin Zheng, and Thomas W. Crowther

Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.

Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell

Publications Copernicus