Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 3
Biogeosciences, 15, 703–719, 2018
https://doi.org/10.5194/bg-15-703-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 15, 703–719, 2018
https://doi.org/10.5194/bg-15-703-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Feb 2018

Research article | 05 Feb 2018

Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

Cédric Bader et al.
Related authors  
Parametrization consequences of constraining soil organic matter models by total carbon and radiocarbon using long-term field data
Lorenzo Menichetti, Thomas Kätterer, and Jens Leifeld
Biogeosciences, 13, 3003–3019, https://doi.org/10.5194/bg-13-3003-2016,https://doi.org/10.5194/bg-13-3003-2016, 2016
Short summary
Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system
R. Hüppi, R. Felber, A. Neftel, J. Six, and J. Leifeld
SOIL, 1, 707–717, https://doi.org/10.5194/soil-1-707-2015,https://doi.org/10.5194/soil-1-707-2015, 2015
Short summary
14C in cropland soil of a long-term field trial – experimental variability and implications for estimating carbon turnover
J. Leifeld and J. Mayer
SOIL, 1, 537–542, https://doi.org/10.5194/soil-1-537-2015,https://doi.org/10.5194/soil-1-537-2015, 2015
Short summary
Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015,https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Degradation changes stable carbon isotope depth profiles in palsa peatlands
J. P. Krüger, J. Leifeld, and C. Alewell
Biogeosciences, 11, 3369–3380, https://doi.org/10.5194/bg-11-3369-2014,https://doi.org/10.5194/bg-11-3369-2014, 2014
Related subject area  
Biogeochemistry: Soils
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil
Yanxia Nie, Xiaoge Han, Jie Chen, Mengcen Wang, and Weijun Shen
Biogeosciences, 16, 4277–4291, https://doi.org/10.5194/bg-16-4277-2019,https://doi.org/10.5194/bg-16-4277-2019, 2019
Short summary
Simulated wild boar bioturbation increases the stability of forest soil carbon
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019,https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Spatial changes in soil stable isotopic composition in response to carrion decomposition
Sarah W. Keenan, Sean M. Schaeffer, and Jennifer M. DeBruyn
Biogeosciences, 16, 3929–3939, https://doi.org/10.5194/bg-16-3929-2019,https://doi.org/10.5194/bg-16-3929-2019, 2019
Short summary
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Cited articles  
Bader, C., Müller, M., Schulin, R., and Leifeld, J.: Amount and stability of recent and aged plant residues in degrading peatland soils, Soil Biol. Biochem., 109, 167–175, 2017.
Bates, D., Maechler, M., Bolker, B. M., and Walker, S. C.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, 2015.
Beer, J., Lee, K., Whiticar, M., and Blodau, C.: Geochemical controls on anaerobic organic matter decomposition in a northern peatland, Limnol. Oceanogr., 53, 1393–1407, 2008.
Berglund, K.: Optimal drainage depth of five cultivated organic soils, Swed. J. Agr. Res., 25, 185–196, 1995.
Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A.: Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs, Rapid Commun. Mass Sp., 19, 1401–1408, 2005.
Publications Copernicus
Download
Short summary
When drained, peatlands degrade and release large quantities of CO2, thereby contributing to global warming. Do land use or the chemical composition of peat control the rate of that release? We studied 21 sites from the temperate climate zone managed as croplands, grasslands, or forests and found that the CO2 release was high, but only slightly influenced by land use or peat composition. Hence, only keeping peatlands in their natural state prevents them from becoming strong CO2 sources.
When drained, peatlands degrade and release large quantities of CO2, thereby contributing to...
Citation