Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 15, issue 21
Biogeosciences, 15, 6685–6711, 2018
https://doi.org/10.5194/bg-15-6685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 6685–6711, 2018
https://doi.org/10.5194/bg-15-6685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Nov 2018

Research article | 12 Nov 2018

A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations

Prima Anugerahanti et al.
Related authors  
South Atlantic meridional transports from NEMO-based simulations and reanalyses
Davi Mignac, David Ferreira, and Keith Haines
Ocean Sci., 14, 53–68, https://doi.org/10.5194/os-14-53-2018,https://doi.org/10.5194/os-14-53-2018, 2018
Short summary
Improved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
N. Melia, K. Haines, and E. Hawkins
The Cryosphere, 9, 2237–2251, https://doi.org/10.5194/tc-9-2237-2015,https://doi.org/10.5194/tc-9-2237-2015, 2015
Short summary
Mechanisms of Atlantic Meridional Overturning Circulation variability simulated by the NEMO model
V. N. Stepanov and K. Haines
Ocean Sci., 10, 645–656, https://doi.org/10.5194/os-10-645-2014,https://doi.org/10.5194/os-10-645-2014, 2014
Related subject area  
Biogeochemistry: Modelling, Aquatic
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019,https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019,https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019,https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Oxygen dynamics and evaluation of the single station diel oxygen model across contrasting geologies
Simon J. Parker
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-60,https://doi.org/10.5194/bg-2019-60, 2019
Revised manuscript accepted for BG
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modelling approach
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-152,https://doi.org/10.5194/bg-2019-152, 2019
Revised manuscript accepted for BG
Short summary
Cited articles  
Adamson, M. W. and Morozov, A. Y.: When can we trust our model predictions? Unearthing structural sensitivity in biological systems, P. Roy. Soc. Lond. A Mat., 469, 20120500, https://doi.org/10.1098/rspa.2012.0500, 2013. a, b, c, d
Aldebert, C., Nerini, D., Gauduchon, M., and Poggiale, J. C.: Does structural sensitivity alter complexity–stability relationships?, Ecol. Complex., 28, 104–112, https://doi.org/10.1016/j.ecocom.2016.07.004, 2016. a, b, c
Aldebert, C., Kooi, B. W., Nerini, D., and Poggiale, J. C.: Is structural sensitivity a problem of oversimplified biological models? Insights from nested Dynamic Energy Budget models, J. Theor. Biol., 448, 1–8, https://doi.org/10.1016/j.jtbi.2018.03.019,2018. a
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. a
Anderson, T. R.: Plankton functional type modelling: Running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005. a, b, c
Publications Copernicus
Download
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed...
Citation