Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 21
Biogeosciences, 15, 6649-6658, 2018
https://doi.org/10.5194/bg-15-6649-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 6649-6658, 2018
https://doi.org/10.5194/bg-15-6649-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Nov 2018

Research article | 09 Nov 2018

Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment

Sheng-Hui Zhang1,3, Juan Yu1,2, Qiong-Yao Ding1, Gui-Peng Yang1,2, Kun-Shan Gao4, Hong-Hai Zhang1,2, and Da-Wei Pan3 Sheng-Hui Zhang et al.
  • 1Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
  • 2Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
  • 3Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, China
  • 4State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China

Abstract. A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on the phytoplankton species Phaeodactylum tricornutum (P. tricornutum), Thalassiosira weissflogii (T. weissflogii) and Emiliania huxleyi (E. huxleyi) and their production ability of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), as well as four halocarbon compounds, bromodichloromethane (CHBrCl2), methyl bromide (CH3Br), dibromomethane (CH2Br2) and iodomethane (CH3I). Over a period of 5 weeks, P. tricornuntum outcompeted T. weissflogii and E. huxleyi, comprising more than 99% of the final biomass. During the logarithmic growth phase (phase I), mean DMS concentration in high pCO2 mesocosms (1000µatm) was 28% lower than that in low pCO2 mesocosms (400µatm). Elevated pCO2 led to a delay in DMSP-consuming bacteria concentrations attached to T. weissflogii and P. tricornutum and finally resulted in the delay of DMS concentration in the high pCO2 treatment. Unlike DMS, the elevated pCO2 did not affect DMSP production ability of T. weissflogii or P. tricornuntum throughout the 5-week culture. A positive relationship was detected between CH3I and T. weissflogii and P. tricornuntum during the experiment, and there was a 40% reduction in mean CH3I concentration in the high pCO2 mesocosms. CHBrCl2, CH3Br, and CH2Br2 concentrations did not increase with elevated chlorophyll a (Chl a) concentrations compared with DMS(P) and CH3I, and there were no major peaks both in the high pCO2 or low pCO2 mesocosms. In addition, no effect of elevated pCO2 was identified for any of the three bromocarbons.

Publications Copernicus
Download
Short summary
Environmental effects of ocean acidification and trace gases have drawn much attention in recent years and existing studies reveal that the response of communities and trace gases to ocean acidification is still not predictable and requires further study. The present study examined the effect of elevated pCO2 on trace gas production and phytoplankton during an ocean acidification mesocosm experiment.
Environmental effects of ocean acidification and trace gases have drawn much attention in recent...
Citation
Share