Research article
08 Nov 2018
Research article | 08 Nov 2018
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng et al.
Related authors
Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019,https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016,https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary
Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663–680, https://doi.org/10.5194/bg-16-663-2019,https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016,https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary
Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems
Xiaofeng Xu, Fengming Yuan, Paul J. Hanson, Stan D. Wullschleger, Peter E. Thornton, William J. Riley, Xia Song, David E. Graham, Changchun Song, and Hanqin Tian
Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016,https://doi.org/10.5194/bg-13-3735-2016, 2016
Short summary
A global scale mechanistic model of photosynthetic capacity (LUNA V1.0)
A. A. Ali, C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, E. C. Massoud, J. A. Vrugt, J. D. Muss, N. G. McDowell, J. B. Fisher, P. B. Reich, and C. J. Wilson
Geosci. Model Dev., 9, 587–606, https://doi.org/10.5194/gmd-9-587-2016,https://doi.org/10.5194/gmd-9-587-2016, 2016
Short summary
Related subject area
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Dynamics of deep soil carbon – insights from 14C time-series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-361,https://doi.org/10.5194/bg-2018-361, 2018
Revised manuscript accepted for BG
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland
Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen
Biogeosciences, 15, 4447–4457, https://doi.org/10.5194/bg-15-4447-2018,https://doi.org/10.5194/bg-15-4447-2018, 2018
Short summary
In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography
Yi-Tse Weng, Chun-Chieh Wang, Cheng-Cheng Chiang, Heng Tsai, Yen-Fang Song, Shiuh-Tsuen Huang, and Biqing Liang
Biogeosciences, 15, 3133–3142, https://doi.org/10.5194/bg-15-3133-2018,https://doi.org/10.5194/bg-15-3133-2018, 2018
Short summary
Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data
Juha Mikola, Tarmo Virtanen, Maiju Linkosalmi, Emmi Vähä, Johanna Nyman, Olga Postanogova, Aleksi Räsänen, D. Johan Kotze, Tuomas Laurila, Sari Juutinen, Vladimir Kondratyev, and Mika Aurela
Biogeosciences, 15, 2781–2801, https://doi.org/10.5194/bg-15-2781-2018,https://doi.org/10.5194/bg-15-2781-2018, 2018
Short summary
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
Flux balance modeling to predict bacterial survival during pulsed-activity events
Nicholas A. Jose, Rebecca Lau, Tami L. Swenson, Niels Klitgord, Ferran Garcia-Pichel, Benjamin P. Bowen, Richard Baran, and Trent R. Northen
Biogeosciences, 15, 2219–2229, https://doi.org/10.5194/bg-15-2219-2018,https://doi.org/10.5194/bg-15-2219-2018, 2018
Short summary
Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Xiao Han, Cong Xu, Jennifer A. J. Dungait, Roland Bol, Xiaojie Wang, Wenliang Wu, and Fanqiao Meng
Biogeosciences, 15, 1933–1946, https://doi.org/10.5194/bg-15-1933-2018,https://doi.org/10.5194/bg-15-1933-2018, 2018
Short summary
Soil properties determine the elevational patterns of base cations and micronutrients in the plant–soil system up to the upper limits of trees and shrubs
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018,https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018,https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai–Tibet Plateau, China
Bo Xu, Jinniu Wang, Ning Wu, Yan Wu, and Fusun Shi
Biogeosciences, 15, 567–579, https://doi.org/10.5194/bg-15-567-2018,https://doi.org/10.5194/bg-15-567-2018, 2018
Short summary
High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches
Rémi Cardinael, Bertrand Guenet, Tiphaine Chevallier, Christian Dupraz, Thomas Cozzi, and Claire Chenu
Biogeosciences, 15, 297–317, https://doi.org/10.5194/bg-15-297-2018,https://doi.org/10.5194/bg-15-297-2018, 2018
Short summary
Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies
Julian Helfenstein, Jannes Jegminat, Timothy I. McLaren, and Emmanuel Frossard
Biogeosciences, 15, 105–114, https://doi.org/10.5194/bg-15-105-2018,https://doi.org/10.5194/bg-15-105-2018, 2018
Short summary
Organic matter dynamics along a salinity gradient in Siberian steppe soils
Norbert Bischoff, Robert Mikutta, Olga Shibistova, Reiner Dohrmann, Daniel Herdtle, Lukas Gerhard, Franziska Fritzsche, Alexander Puzanov, Marina Silanteva, Anna Grebennikova, and Georg Guggenberger
Biogeosciences, 15, 13–29, https://doi.org/10.5194/bg-15-13-2018,https://doi.org/10.5194/bg-15-13-2018, 2018
Short summary
How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system
Daniel Puppe, Axel Höhn, Danuta Kaczorek, Manfred Wanner, Marc Wehrhan, and Michael Sommer
Biogeosciences, 14, 5239–5252, https://doi.org/10.5194/bg-14-5239-2017,https://doi.org/10.5194/bg-14-5239-2017, 2017
Short summary
Cited articles
Barbier, B. A., Dziduch, I., Liebner, S., Ganzert, L., Lantuit, H.,
Pollard, W., and Wagner, D.: Methane-cycling communities in a
permafrost-affected soil on Herschel Island, Western Canadian Arctic: active
layer profiling of
mcrA and
pmoA genes, FEMS Microbiol. Ecol., 82, 287–302,
https://doi.org/10.1111/j.1574-6941.2012.01332.x, 2012.
Bockheim, J. G.: Importance of cryoturbation in redistributing organic
carbon in permafrost-affected soils, Soil. Sci. Soc. Am. J., 71, 1335–1342,
https://doi.org/10.2136/Sssaj2006.0414n, 2007.
Chang, R. Y.-W., Miller, C. E., Dinardo, S. J., Karion, A., Sweeney, C.,
Daube, B. C., Henderson, J. M., Mountain, M. E., Eluszkiewicz, J., Miller,
J. B., Bruhwiler, L. M. P., and Wofsy, S. C.: Methane emissions from Alaska
in 2012 from CARVE airborne observations, P. Natl. Acad. Sci. USA,
111, 16694–16699, https://doi.org/10.1073/pnas.1412953111, 2014.
Cheema, S., Zeyer, J., and Henneberger, R.: Methanotrophic and methanogenic
communities in Swiss alpine fens dominated by
Carex rostrata and
Eriophorum angustifolium, Appl. Environ.
Microb., 81, 5832–5844, https://doi.org/10.1128/aem.01519-15, 2015.
Christiansen, J. R., Romero, A. J. B., Jørgensen, N. O. G., Glaring, M.
A., Jørgensen, C. J., Berg, L. K., and Elberling, B.: Methane fluxes and
the functional groups of methanotrophs and methanogens in a young Arctic
landscape on Disko Island, West Greenland, Biogeochemistry, 122, 15–33,
https://doi.org/10.1007/s10533-014-0026-7, 2015.
Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y.-W.,
Daube, B. C., Euskirchen, E. S., Henderson, J. M., Karion, A., Miller, J.
B., Miller, S. M., Parazoo, N. C., Randerson, J. T., Sweeney, C., Tans, P.,
Thoning, K., Veraverbeke, S., Miller, C. E., and Wofsy, S. C.: Carbon
dioxide sources from Alaska driven by increasing early winter respiration
from Arctic tundra, P. Natl. Acad. Sci. USA, 114, 5361–5366,
https://doi.org/10.1073/pnas.1618567114, 2017.
Dingman, S. L., Barry, R. G., Weller, G., Benson, C., LeDrew, E. F., and
Goodwin, C. W.: Climate, snow cover, microclimate, and hydrology, in: An
Arctic ecosystem : the coastal tundra at Barrow, Alaska, edited by: Brown,
J., Miller, P. C., Tieszen, L. L., and Bunnell, F., Dowden, Hutchison &
Ross, Stroudsburg, PA, 30–65, 1980.
Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., and
Striegl, R. G.: Ancient low–molecular-weight organic acids in permafrost
fuel rapid carbon dioxide production upon thaw, P. Natl. Acad. Sci. USA, 112, 13946–13951, https://doi.org/10.1073/pnas.1511705112, 2015.
Frank-Fahle, B. A., Yergeau, É., Greer, C. W., Lantuit, H., and Wagner,
D.: Microbial Functional Potential and Community Composition in
Permafrost-Affected Soils of the NW Canadian Arctic, PLoS ONE, 9, e84761,
https://doi.org/10.1371/journal.pone.0084761, 2014.
French, H. M.: The Periglacial Environment, 3rd ed., John Wiley & Sons,
Chichester, 2007.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B., and Torn, M. S.:
Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2.
Microtopography Determines How
CO2 and
CH4 Exchange Responds to
Changes in Temperature and Precipitation, J. Geophys. Res.-Biogeo., 122,
3174–3187, https://doi.org/10.1002/2017JG004037, 2017.
Gulledge, J., Doyle, A. P., and Schimel, J. P.: Different
-inhibition patterns of soil
CH4 consumption: A result of
distinct
CH4-oxidizer populations across sites?, Soil Biol. Biochem.,
29, 13–21, https://doi.org/10.1016/S0038-0717(96)00265-9, 1997.
Herndon, E. M., Mann, B. F., Roy Chowdhury, T., Yang, Z., Wullschleger, S.
D., Graham, D., Liang, L., and Gu, B.: Pathways of anaerobic organic matter
decomposition in tundra soils from Barrow, Alaska, J. Geophys. Res.-Biogeo.,
120, 2345–2359, https://doi.org/10.1002/2015JG003147, 2015a.
Herndon, E. M., Yang, Z., Bargar, J., Janot, N., Regier, T. Z., Graham, D.
E., Wullschleger, S. D., Gu, B., and Liang, L.: Geochemical drivers of
organic matter decomposition in arctic tundra soils, Biogeochemistry, 126,
397–414, https://doi.org/10.1007/s10533-015-0165-5, 2015b.
Hornibrook, E. R. C., Bowes, H. L., Culbert, A., and Gallego-Sala, A. V.:
Methanotrophy potential versus methane supply by pore water diffusion in
peatlands, Biogeosciences, 6, 1491–1504,
https://doi.org/10.5194/bg-6-1491-2009, 2009.
Howeler, R. H. and Bouldin, D. R.: The Diffusion and Consumption of Oxygen in
Submerged Soils, Soil. Sci. Soc. Am. J., 35, 202–208,
https://doi.org/10.2136/sssaj1971.03615995003500020014x, 1971.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J.,
and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Istok, J. D., Park, M., Michalsen, M., Spain, A. M., Krumholz, L. R., Liu,
C., McKinley, J., Long, P., Roden, E., Peacock, A. D., and Baldwin, B.: A
thermodynamically-based model for predicting microbial growth and community
composition coupled to system geochemistry: Application to uranium
bioreduction, J. Contam. Hydrol., 112, 1–14,
https://doi.org/10.1016/j.jconhyd.2009.07.004, 2010.
Jørgensen, C. J., Lund Johansen, K. M., Westergaard-Nielsen, A., and
Elberling, B.: Net regional methane sink in High Arctic soils of northeast
Greenland, Nat. Geosci., 8, 20–23, https://doi.org/10.1038/ngeo2305, 2015.
Kim, Y. and Liesack, W.: Differential Assemblage of Functional Units in Paddy
Soil Microbiomes, PLoS ONE, 10, e0122221, https://doi.org/10.1371/journal.pone.0122221,
2015.
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., and Pfeiffer, E.-M.:
Regulation of methane production, oxidation, and emission by vascular plants
and bryophytes in ponds of the northeast Siberian polygonal tundra, J.
Geophys. Res.-Biogeo., 120, 2525–2541, https://doi.org/10.1002/2015JG003053, 2015.
Laanbroek, H. J.: Methane emission from natural wetlands: interplay between
emergent macrophytes and soil microbial processes. A mini-review, Ann.
Bot.-London, 105, 141–153, https://doi.org/10.1093/aob/mcp201, 2010.
Langford, Z., Kumar, J., Hoffman, F., Norby, R., Wullschleger, S., Sloan, V.,
and Iversen, C.: Mapping Arctic Plant Functional Type Distributions in the
Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets, Remote
Sens.-Basel, 8, 733,
https://doi.org/10.3390/rs8090733, 2016.
Lara, M. J., McGuire, A. D., Euskirchen, E. S., Tweedie, C. E., Hinkel, K.
M., Skurikhin, A. N., Romanovsky, V. E., Grosse, G., Bolton, W. R., and
Genet, H.: Polygonal tundra geomorphological change in response to warming
alters future
CO2 and
CH4 flux on the Barrow Peninsula, Glob.
Change Biol., 21, 1634–1651, https://doi.org/10.1111/gcb.12757, 2015.
Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L., and Jeon, C. O.: High
resolution depth distribution of Bacteria, Archaea, methanotrophs, and
methanogens in the bulk and rhizosphere soils of a flooded rice paddy, Front.
Microbiol., 6, 639,
https://doi.org/10.3389/fmicb.2015.00639, 2015.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of
methane by soils: A review, Eur. J. Soil Biol., 37, 25–50,
https://doi.org/10.1016/s1164-5563(01)01067-6, 2001.
Liebner, S., Schwarzenbach, S. P., and Zeyer, J.: Methane emissions from an
alpine fen in central Switzerland, Biogeochemistry, 109, 287–299,
https://doi.org/10.1007/s10533-011-9629-4, 2012.
Liikanen, A., Huttunen, J. T., Valli, K., and Martikainen, P. J.: Methane
cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake
Kevätön, Finland, Ark. Hydrobiol., 154, 585–603,
https://doi.org/10.1127/archiv-hydrobiol/154/2002/585, 2002.
Liljedahl, A. K., Wilson, C., Kholodov, A., Chamberlain, A., Lee, H., Daanen,
R., Cohen, L., Hayes, S., Iwahana, G., Iverson, A., Weiss, T., Hoffman, A.,
Wullschleger, S., and Hinzman, L.: Ground Water Levels for NGEE Areas A, B, C
and D, Barrow, Alaska, 2012–2014, https://doi.org/10.5440/1183767, 2015.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology, Nat.
Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Lipson, D. A., Jha, M., Raab, T. K., and Oechel, W. C.: Reduction of iron
(III) and humic substances plays a major role in anaerobic respiration in an
Arctic peat soil, J. Geophys. Res., 115, G00I06, https://doi.org/10.1029/2009jg001147, 2010.
Lofton, D. D., Whalen, S. C., and Hershey, A. E.: Effect of temperature on
methane dynamics and evaluation of methane oxidation kinetics in shallow
Arctic Alaskan lakes, Hydrobiologia, 721, 209–222,
https://doi.org/10.1007/s10750-013-1663-x, 2014.
MacKay, J. R.: Thermally induced movements in ice-wedge polygons, western
Arctic coast: a long-term study, Geogr. Phys. Quatern., 54, 41–68,
https://doi.org/10.7202/004846ar, 2000.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin,
P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic
tundra: comparisons among observations, process models, and atmospheric
inversions, Biogeosciences, 9, 3185–3204,
https://doi.org/10.5194/bg-9-3185-2012, 2012.
Parmentier, F. J. W., van Huissteden, J., Kip, N., Op den Camp, H. J. M.,
Jetten, M. S. M., Maximov, T. C., and Dolman, A. J.: The role of endophytic
methane-oxidizing bacteria in submerged
Sphagnum in determining
methane emissions of Northeastern Siberian tundra, Biogeosciences, 8,
1267–1278, https://doi.org/10.5194/bg-8-1267-2011, 2011.
Preuss, I., Knoblauch, C., Gebert, J., and Pfeiffer, E.-M.: Improved
quantification of microbial
CH4 oxidation efficiency in arctic
wetland soils using carbon isotope fractionation, Biogeosciences, 10,
2539–2552, https://doi.org/10.5194/bg-10-2539-2013, 2013.
Raz-Yaseef, N., Torn, M. S., Wu, Y., Billesbach, D. P., Liljedahl, A. K.,
Kneafsey, T. J., Romanovsky, V. E., Cook, D. R., and Wullschleger, S. D.:
Large
CO2 and
CH4 emissions from polygonal tundra during
spring thaw in northern Alaska, Geophys. Res. Lett., 44, 504–513,
https://doi.org/10.1002/2016GL071220, 2017.
Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S.,
Meng, L., Mahowald, N. M., and Hess, P.: Barriers to predicting changes in
global terrestrial methane fluxes: analyses using CLM4Me, a methane
biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953,
https://doi.org/10.5194/bg-8-1925-2011, 2011.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat and
mass transport processes in the active layer and permafrost, Permafrost
Periglac., 11, 219–239,
https://doi.org/10.1002/1099-1530(200007/09)11:3<219::aid-ppp352>3.0.co;2-7,
2000.
Roslev, P. and King, G. M.: Regulation of methane oxidation in a freshwater
wetland by water table changes and anoxia, FEMS Microbiol. Ecol., 19,
105–115, https://doi.org/10.1016/0168-6496(95)00084-4, 1996.
Roy Chowdhury, T., Mitsch, W. J., and Dick, R. P.: Seasonal methanotrophy
across a hydrological gradient in a freshwater wetland, Ecol. Eng., 72,
116–124, https://doi.org/10.1016/j.ecoleng.2014.08.015, 2014.
Roy Chowdhury, T., Herndon, E. M., Phelps, T. J., Elias, D. A., Gu, B.,
Liang, L., Wullschleger, S. D., and Graham, D. E.: Stoichiometry and
temperature sensitivity of methanogenesis and
CO2 production from
saturated polygonal tundra in Barrow, Alaska, Glob. Change Biol., 21,
722–737, https://doi.org/10.1111/gcb.12762, 2015.
Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls
on
CH4 emission from polygonal tundra on the microsite scale in the
Lena river delta, Siberia, Glob. Change Biol., 16, 3096–3110,
https://doi.org/10.1111/j.1365-2486.2010.02232.x, 2010.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as
solvent, Atmos. Chem. Phys., 15, 4399–4981,
https://doi.org/10.5194/acp-15-4399-2015, 2015.
Schädel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R.,
Capek, P., De Baets, S., Diakova, K., Ernakovich, J., Estop-Aragones, C.,
Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C.,
Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., O'Donnell, J.
A., Chowdhury, T. R., Santruckova, H., Shaver, G., Sloan, V. L., Treat, C.
C., Turetsky, M. R., Waldrop, M. P., and Wickland, K. P.: Potential carbon
emissions dominated by carbon dioxide from thawed permafrost soils, Nat.
Clim. Change, 6, 950–953, https://doi.org/10.1038/nclimate3054, 2016.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
permafrost carbon to climate change: implications for the global carbon
cycle, BioScience, 58, 701–714, https://doi.org/10.1641/b580807, 2008.
Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P.,
Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais,
P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J.,
Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D.,
Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M.,
O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E.,
Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M.,
Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M.,
Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of
vulnerability of permafrost carbon to climate change, Climatic Change, 119,
359–374, https://doi.org/10.1007/s10584-013-0730-7, 2013.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Segers, R.: Methane production and methane consumption: a review of processes
underlying wetland methane fluxes, Biogeochemistry, 41, 23–51,
1998.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D.,
Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal
variations of active-layer thickness in moisture-controlled landscapes,
Barrow, Alaska, J. Geophys. Res.-Biogeo., 115, G00I04, https://doi.org/10.1029/2009JG001248, 2010.
Shukla, P. N., Pandey, K. D., and Mishra, V. K.: Environmental Determinants
of Soil Methane Oxidation and Methanotrophs, Crit. Rev. Environ. Sci.
Technol., 43, 1945–2011, https://doi.org/10.1080/10643389.2012.672053, 2013.
Sturtevant, C. S., Oechel, W. C., Zona, D., Kim, Y., and Emerson, C. E.: Soil
moisture control over autumn season methane flux, Arctic Coastal Plain of
Alaska, Biogeosciences, 9, 1423–1440,
https://doi.org/10.5194/bg-9-1423-2012, 2012.
Sturtevant, C. S. and Oechel, W. C.: Spatial variation in landscape-level
CO2 and
CH4 fluxes from arctic coastal tundra: influence from
vegetation, wetness, and the thaw lake cycle, Glob. Change Biol., 19,
2853–2866, https://doi.org/10.1111/gcb.12247, 2013.
Sundh, I., Nilsson, M., Granberg, G., and Svensson, B. H.: Depth distribution
of microbial production and oxidation of methane in northern boreal
peatlands, Microb. Ecol., 27, 253–265, https://doi.org/10.1007/bf00182409, 1994.
Throckmorton, H. M., Newman, B. D., Heikoop, J. M., Perkins, G. B., Feng, X.,
Graham, D. E., O'Malley, D., Vesselinov, V. V., Young, J., Wullschleger, S.
D., and Wilson, C. J.: Active layer hydrology in an arctic tundra ecosystem:
quantifying water sources and cycling using water stable isotopes, Hydrol.
Process., 30, 4972–4986, https://doi.org/10.1002/hyp.10883, 2016.
Treat, C. C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M.,
McGuire, A. D., Norby, R. J., Roy Chowdhury, T., Richter, A.,
Šantrůčková, H., Schädel, C., Schuur, E. A. G., Sloan, V.
L., Turetsky, M. R., and Waldrop, M. P.: A pan-Arctic synthesis of
CH4 and
CO2 production from anoxic soil incubations, Glob.
Change Biol., 21, 2787–2803, https://doi.org/10.1111/gcb.12875, 2015.
Vaughn, L. J. S., Conrad, M. E., Bill, M., and Torn, M. S.: Isotopic insights
into methane production, oxidation, and emissions in Arctic polygon tundra,
Glob. Change Biol., 22, 3487–3502, https://doi.org/10.1111/gcb.13281, 2016.
von Fischer, J. C., Rhew, R. C., Ames, G. M., Fosdick, B. K., and von
Fischer, P. E.: Vegetation height and other controls of spatial variability
in methane emissions from the Arctic coastal tundra at Barrow, Alaska, J.
Geophys. Res.-Biogeo., 115, G00I03, https://doi.org/10.1029/2009jg001283,
2010.
Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu,
Y., Ulrich, C., Peterson, J. E., Torn, M. S., and Hubbard, S. S.: Identifying
multiscale zonation and assessing the relative importance of polygon
geomorphology on carbon fluxes in an Arctic tundra ecosystem, J. Geophys.
Res.-Biogeo., 120, 788–808, https://doi.org/10.1002/2014JG002799, 2015.
Whalen, S. C., and Reeburgh, W. S.: Methane Oxidation, Production, and
Emission at Contrasting Sites in a Boreal Bog, Geomicrobiol. J., 17,
237–251, https://doi.org/10.1080/01490450050121198, 2000.
Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L.,
Wullschleger, S. D., and Thornton, P. E.: A microbial functional group-based
module for simulating methane production and consumption: Application to an
incubated permafrost soil, J. Geophys. Res.-Biogeo., 120, 1315–1333,
https://doi.org/10.1002/2015JG002935, 2015.
Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., and Gu, B.: Effects
of warming on the degradation and production of low-molecular-weight labile
organic carbon in an Arctic tundra soil, Soil Biol. Biochem., 95, 202–211,
https://doi.org/10.1016/j.soilbio.2015.12.022, 2016.
Yang, Z., Yang, S., Van Nostrand, J. D., Zhou, J., Fang, W., Qi, Q., Liu,
Y., Wullschleger, S. D., Liang, L., Graham, D. E., Yang, Y., and Gu, B.:
Microbial community and functional gene changes in Arctic tundra soils in a
microcosm warming experiment, Front. Microbiol., 8, 1741, https://doi.org/10.3389/fmicb.2017.01741, 2017.
Zheng, J., RoyChowdhury, T., and Graham, D. E.:
CO2 and
CH4
Production and
CH4 Oxidation in Low Temperature Soil Incubations from
Flat- and High-Centered Polygons, Barrow, Alaska, 2012,
https://doi.org/10.5440/1288688, 2017.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A.,
Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold season
emissions dominate the Arctic tundra methane budget, P. Natl. Acad. Sci. USA,
113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.