Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 15, issue 2
Biogeosciences, 15, 597–612, 2018
https://doi.org/10.5194/bg-15-597-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 15, 597–612, 2018
https://doi.org/10.5194/bg-15-597-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jan 2018

Research article | 30 Jan 2018

The role of soil pH on soil carbonic anhydrase activity

Joana Sauze et al.
Related authors  
Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition
Sam P. Jones, Jérôme Ogée, Joana Sauze, Steven Wohl, Noelia Saavedra, Noelia Fernández-Prado, Juliette Maire, Thomas Launois, Alexandre Bosc, and Lisa Wingate
Hydrol. Earth Syst. Sci., 21, 6363–6377, https://doi.org/10.5194/hess-21-6363-2017,https://doi.org/10.5194/hess-21-6363-2017, 2017
Related subject area  
Biogeochemistry: Soils
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle
Wolfgang Wanek, David Zezula, Daniel Wasner, Maria Mooshammer, and Judith Prommer
Biogeosciences, 16, 3047–3068, https://doi.org/10.5194/bg-16-3047-2019,https://doi.org/10.5194/bg-16-3047-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Global soil–climate–biome diagram: linking surface soil properties to climate and biota
Xia Zhao, Yuanhe Yang, Haihua Shen, Xiaoqing Geng, and Jingyun Fang
Biogeosciences, 16, 2857–2871, https://doi.org/10.5194/bg-16-2857-2019,https://doi.org/10.5194/bg-16-2857-2019, 2019
Short summary
Cited articles  
Achat, D. L., Daumer, M. L., Sperandio, M., Santellani, A. C., and Morel, C.: Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics, Nutr. Cycl. Agroecosys., 99, 1–15, https://doi.org/10.1007/s10705-014-9614-0, 2014. 
Allison, C. E., Francey, R. J., and Meijer, H. A. J.: Recommendations for the reporting of stable isotope measurements of carbon and oxygen in CO gas, Ref. Intercomp. Mater. Stable Isot., 24, 155–162, https://doi.org/10.1016/0020-708X(73)90108-7, 1995. 
Badger, M.: The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms, Photosynth. Res., 77, 83–94, https://doi.org/10.1023/A:1025821717773, 2003. 
Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White, J. W. C.: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years, Nature, 488, 70–72, https://doi.org/10.1038/nature11299, 2012. 
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Previous studies have shown that differences in soil carbonic anhydrase (CA) activity are found in different biomes and seasons, but our understanding of the drivers responsible for those patterns is still limited. We artificially increased the soil CA concentration to test how soil pH affected the relationship between soil CA activity and concentration. We found that soil pH was the primary driver of soil CA activity.
Previous studies have shown that differences in soil carbonic anhydrase (CA) activity are found...
Citation