Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 15, issue 17
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Sep 2018

Research article | 14 Sep 2018

Eddy covariance flux errors due to random and systematic timing errors during data acquisition

Gerardo Fratini et al.
Related authors  
A robust data cleaning procedure for eddy covariance flux measurements
Domenico Vitale, Gerardo Fratini, Massimo Bilancia, Giacomo Nicolini, Simone Sabbatini, and Dario Papale
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-270,https://doi.org/10.5194/bg-2019-270, 2019
Manuscript under review for BG
Short summary
An improved dust emission model – Part 1: Model description and comparison against measurements
J. F. Kok, N. M. Mahowald, G. Fratini, J. A. Gillies, M. Ishizuka, J. F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R. S. Van Pelt, and T. M. Zobeck
Atmos. Chem. Phys., 14, 13023–13041, https://doi.org/10.5194/acp-14-13023-2014,https://doi.org/10.5194/acp-14-13023-2014, 2014
Short summary
Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014,https://doi.org/10.5194/bg-11-4651-2014, 2014
Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014,https://doi.org/10.5194/amt-7-2273-2014, 2014
Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction
G. Fratini, D. K. McDermitt, and D. Papale
Biogeosciences, 11, 1037–1051, https://doi.org/10.5194/bg-11-1037-2014,https://doi.org/10.5194/bg-11-1037-2014, 2014
Related subject area  
Biogeochemistry: Air - Land Exchange
Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra
Martin Jiskra, Jeroen E. Sonke, Yannick Agnan, Detlev Helmig, and Daniel Obrist
Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019,https://doi.org/10.5194/bg-16-4051-2019, 2019
Short summary
Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019,https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
El Niño–Southern Oscillation (ENSO) event reduces CO2 uptake of an Indonesian oil palm plantation
Christian Stiegler, Ana Meijide, Yuanchao Fan, Ashehad Ashween Ali, Tania June, and Alexander Knohl
Biogeosciences, 16, 2873–2890, https://doi.org/10.5194/bg-16-2873-2019,https://doi.org/10.5194/bg-16-2873-2019, 2019
Short summary
Carbon–water flux coupling under progressive drought
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences, 16, 2557–2572, https://doi.org/10.5194/bg-16-2557-2019,https://doi.org/10.5194/bg-16-2557-2019, 2019
Short summary
Biogenic isoprenoid emissions under drought stress: Different responses for isoprene and terpenes
Boris Bonn, Ruth-Kristina Magh, Joseph Rombach, and Jürgen Kreuzwieser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-227,https://doi.org/10.5194/bg-2019-227, 2019
Revised manuscript accepted for BG
Short summary
Cited articles  
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, Heidelberg, Germany, London, UK, New York, USA, 460 pp., 2012. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Barnes, J. R.: Electronic System Design: Interference and Noise Control Techniques, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1987. 
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E., and Gentine, P.: Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements, Geophys. Res. Lett., 44, 4287–4295, 2017. 
Publications Copernicus
Download
Short summary
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes measured by eddy covariance (EC) if the raw high-frequency data are affected by random and systematic timing misalignments. Our study was motivated by the increasingly widespread adoption of fully digital EC systems potentially subject to such timing errors. We found biases as large as 10 %. We further propose a test to evaluate EC data logging systems for their time synchronization capabilities.
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes...
Citation