Biogeosciences, 14, 5487-5505, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
06 Dec 2017
Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada
Cara A. Littlefair1,*, Suzanne E. Tank1, and Steven V. Kokelj2 1Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
2Northwest Territories Geological Survey, Government of the Northwest Territories, Yellowknife, NWT, X1A 2L9, Canada
*previously published under the name Cara A. Bulger
Abstract. In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in thermokarst-associated DOC mobilization across Arctic regions. However, they also show that within-region variation in thermokarst intensity and landscape composition is critical for determining the biogeochemical response. Geological and climate legacy shape the physical and chemical composition of permafrost and thermokarst potential. As such, these factors must be considered in predictions of land-to-water carbon mobilization in a warming Arctic.

Citation: Littlefair, C. A., Tank, S. E., and Kokelj, S. V.: Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada, Biogeosciences, 14, 5487-5505,, 2017.
Publications Copernicus
Short summary
This study is the first to examine how permafrost slumping affects dissolved organic carbon (DOC) mobilization in landscapes dominated by glacial tills. Unlike in previous studies, we find that slumping is associated with decreased DOC concentrations in downstream systems – an effect that appears to occur via adsorption to fine-grained sediments. This work adds significantly to our understanding of varying effects of permafrost thaw on organic carbon mobilization across diverse Arctic regions.
This study is the first to examine how permafrost slumping affects dissolved organic carbon...