Research article
24 Nov 2017
Research article | 24 Nov 2017
Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy
Thomas M. DeCarlo et al.
Related authors
Multi-trace-element sea surface temperature coral reconstruction for the southern Mozambique Channel reveals teleconnections with the tropical Atlantic
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019,https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Unveiling the Perth Canyon and its deep-water faunas
Julie A. Trotter, Charitha Pattiaratchi, Paolo Montagna, Marco Taviani, James Falter, Ron Thresher, Andrew Hosie, David Haig, Federica Foglini, Quan Hua, and Malcolm T. McCulloch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-319,https://doi.org/10.5194/bg-2018-319, 2018
Manuscript not accepted for further review
Short summary
Related subject area
Insights into architecture, growth dynamics, and biomineralization from pulsed Sr-labelled Katelysia rhytiphora shells (Mollusca, Bivalvia)
Laura M. Otter, Oluwatoosin B. A. Agbaje, Matt R. Kilburn, Christoph Lenz, Hadrien Henry, Patrick Trimby, Peter Hoppe, and Dorrit E. Jacob
Biogeosciences, 16, 3439–3455, https://doi.org/10.5194/bg-16-3439-2019,https://doi.org/10.5194/bg-16-3439-2019, 2019
Short summary
Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatán Peninsula, Mexico
Simon Michael Ritter, Margot Isenbeck-Schröter, Christian Scholz, Frank Keppler, Johannes Gescher, Lukas Klose, Nils Schorndorf, Jerónimo Avilés Olguín, Arturo González-González, and Wolfgang Stinnesbeck
Biogeosciences, 16, 2285–2305, https://doi.org/10.5194/bg-16-2285-2019,https://doi.org/10.5194/bg-16-2285-2019, 2019
Short summary
Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions
Andrew C. Mitchell, Erika J. Espinosa-Ortiz, Stacy L. Parks, Adrienne J. Phillips, Alfred B. Cunningham, and Robin Gerlach
Biogeosciences, 16, 2147–2161, https://doi.org/10.5194/bg-16-2147-2019,https://doi.org/10.5194/bg-16-2147-2019, 2019
Short summary
Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019,https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Planktonic foraminiferal spine versus shell carbonate Na incorporation in relation to salinity
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019,https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments
Hengchao Xu, Xiaotong Peng, Shijie Bai, Kaiwen Ta, Shouye Yang, Shuangquan Liu, Ho Bin Jang, and Zixiao Guo
Biogeosciences, 16, 949–960, https://doi.org/10.5194/bg-16-949-2019,https://doi.org/10.5194/bg-16-949-2019, 2019
Short summary
Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions
Facheng Ye, Hana Jurikova, Lucia Angiolini, Uwe Brand, Gaia Crippa, Daniela Henkel, Jürgen Laudien, Claas Hiebenthal, and Danijela Šmajgl
Biogeosciences, 16, 617–642, https://doi.org/10.5194/bg-16-617-2019,https://doi.org/10.5194/bg-16-617-2019, 2019
Weaving of biomineralization framework in rotaliid foraminifera: implications for paleoceanographic proxies
Yukiko Nagai, Katsuyuki Uematsu, Chong Chen, Ryoji Wani, Jarosław Tyszka, and Takashi Toyofuku
Biogeosciences, 15, 6773–6789, https://doi.org/10.5194/bg-15-6773-2018,https://doi.org/10.5194/bg-15-6773-2018, 2018
Short summary
Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta)
Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 15, 6591–6605, https://doi.org/10.5194/bg-15-6591-2018,https://doi.org/10.5194/bg-15-6591-2018, 2018
Short summary
Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018,https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017,https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Ba incorporation in benthic foraminifera
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017,https://doi.org/10.5194/bg-14-3387-2017, 2017
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017,https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa
Ella L. Howes, Karina Kaczmarek, Markus Raitzsch, Antje Mewes, Nienke Bijma, Ingo Horn, Sambuddha Misra, Jean-Pierre Gattuso, and Jelle Bijma
Biogeosciences, 14, 415–430, https://doi.org/10.5194/bg-14-415-2017,https://doi.org/10.5194/bg-14-415-2017, 2017
Short summary
Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence
Anne Alexandre, Jérôme Balesdent, Patrick Cazevieille, Claire Chevassus-Rosset, Patrick Signoret, Jean-Charles Mazur, Araks Harutyunyan, Emmanuel Doelsch, Isabelle Basile-Doelsch, Hélène Miche, and Guaciara M. Santos
Biogeosciences, 13, 1693–1703, https://doi.org/10.5194/bg-13-1693-2016,https://doi.org/10.5194/bg-13-1693-2016, 2016
Short summary
Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream
J. F. Mori, T. R. Neu, S. Lu, M. Händel, K. U. Totsche, and K. Küsel
Biogeosciences, 12, 5277–5289, https://doi.org/10.5194/bg-12-5277-2015,https://doi.org/10.5194/bg-12-5277-2015, 2015
Short summary
Impact of seawater [Ca2+] on the calcification and calciteMg / Ca of Amphistegina lessonii
A. Mewes, G. Langer, S. Thoms, G. Nehrke, G.-J. Reichart, L. J. de Nooijer, and J. Bijma
Biogeosciences, 12, 2153–2162, https://doi.org/10.5194/bg-12-2153-2015,https://doi.org/10.5194/bg-12-2153-2015, 2015
Short summary
New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results
A. Alexandre, I. Basile-Doelsch, T. Delhaye, D. Borshneck, J. C. Mazur, P. Reyerson, and G. M. Santos
Biogeosciences, 12, 863–873, https://doi.org/10.5194/bg-12-863-2015,https://doi.org/10.5194/bg-12-863-2015, 2015
Short summary
Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers
G. Langer, G. Nehrke, C. Baggini, R. Rodolfo-Metalpa, J. M. Hall-Spencer, and J. Bijma
Biogeosciences, 11, 7363–7368, https://doi.org/10.5194/bg-11-7363-2014,https://doi.org/10.5194/bg-11-7363-2014, 2014
Short summary
Experimental evidence for foraminiferal calcification under anoxia
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014,https://doi.org/10.5194/bg-11-4029-2014, 2014
Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?
S. Bindschedler, G. Cailleau, O. Braissant, L. Millière, D. Job, and E. P. Verrecchia
Biogeosciences, 11, 2809–2825, https://doi.org/10.5194/bg-11-2809-2014,https://doi.org/10.5194/bg-11-2809-2014, 2014
Downward fluxes of sinking particulate matter in the deep Ionian Sea (NESTOR site), eastern Mediterranean: seasonal and interannual variability
S. Stavrakakis, A. Gogou, E. Krasakopoulou, A. P. Karageorgis, H. Kontoyiannis, G. Rousakis, D. Velaoras, L. Perivoliotis, G. Kambouri, I. Stavrakaki, and V. Lykousis
Biogeosciences, 10, 7235–7254, https://doi.org/10.5194/bg-10-7235-2013,https://doi.org/10.5194/bg-10-7235-2013, 2013
A new model for biomineralization and trace-element signatures of Foraminifera tests
G. Nehrke, N. Keul, G. Langer, L. J. de Nooijer, J. Bijma, and A. Meibom
Biogeosciences, 10, 6759–6767, https://doi.org/10.5194/bg-10-6759-2013,https://doi.org/10.5194/bg-10-6759-2013, 2013
The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications
M. Pacton, S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev, and C. Vasconcelos
Biogeosciences, 10, 6115–6130, https://doi.org/10.5194/bg-10-6115-2013,https://doi.org/10.5194/bg-10-6115-2013, 2013
Cyanobacterial calcification in modern microbialites at the submicrometer scale
E. Couradeau, K. Benzerara, E. Gérard, I. Estève, D. Moreira, R. Tavera, and P. López-García
Biogeosciences, 10, 5255–5266, https://doi.org/10.5194/bg-10-5255-2013,https://doi.org/10.5194/bg-10-5255-2013, 2013
Cited articles
Al-Horani, F. A., Al-Moghrabi, S. M., and De Beer, D.: The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral
Galaxea fascicularis, Mar. Biol., 142, 419–426, https://doi.org/10.1007/s00227-002-0981-8, 2003.
AlKhatib, M. and Eisenhauer, A.: Calcium and Strontium Isotope Fractionation during Precipitation from Aqueous Solutions as a Function of Temperature and Reaction Rate; II. Aragonite, Geochim. Cosmochim. Ac., 209, 320–342, https://doi.org/10.1016/j.gca.2017.04.012, 2017.
Allison, N., Cohen, I., Finch, A. A., Erez, J., and Tudhope, A. W.: Corals concentrate dissolved inorganic carbon to facilitate calcification, Nature Commun., 5, 5741, https://doi.org/10.1038/ncomms6741, 2014.
Barkley, H. C., Cohen, A. L., Golbuu, Y., Starczak, V. R., DeCarlo, T. M., and Shamberger, K. E.: Changes in coral reef communities across a natural gradient in seawater pH, Sci. Adv., 1, e1500328, https://doi.org/10.1126/sciadv.1500328, 2015.
Barkley, H. C., Cohen, A. L., McCorkle, D. C., and Golbuu, Y.: Mechanisms and thresholds for pH tolerance in Palau corals, J. Exp. Mar. Biol. Ecol., 489, 7–14, https://doi.org/10.1016/j.jembe.2017.01.003, 2017.
Barnes, D. J.: Coral skeletons: an explanation of their growth and structure, Science, 170, 1305–1308, https://doi.org/10.1126/science.170.3964.1305, 1970.
Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., Gentile, P., Schulz, B., and Garzanti, E.: Raman spectroscopy as a tool for magnesium estimation in Mg-calcite, J. Raman Spectrosc., 48, 983–992, https://doi.org/10.1002/jrs.5156, 2017.
Brahmi, C., Meibom, A., Smith, D. C., Stolarski, J., Auzoux-Bordenave, S., Nouet, J., Doumenc, D., Djediat, C., and Domart-Coulon, I.: Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral
Balanophyllia regia, Coral Reefs, 29, 175–189, 2010.
Burton, E. A. and Walter, L. M.: Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control?, Geology, 15, 111–114, 1987.
Cai, W.-J., Ma, Y., Hopkinson, B. M., Grottoli, A. G., Warner, M. E., Ding, Q., Hu, X., Yuan, X., Schoepf, V., Xu, H., Han, C., Melman, T. F., Hoadley, K. D., Pettay, D. T., Matsui, Y., Baumann, J. H., Levas, S., Ying, Y., and Wang, Y.: Microelectrode characterization of coral daytime interior pH and carbonate chemistry, Nature Commun., 7, 11144, https://doi.org/10.1038/ncomms11144, 2016.
Chan, N. C. S. and Connolly, S. R.: Sensitivity of coral calcification to ocean acidification: a meta-analysis, Glob. Change Biol., 19, 282–290, https://doi.org/10.1111/gcb.12011, 2013.
Chen, X., Deng, W., Zhu, H., Zhang, Z., Wei, G., and McCulloch, M. T.: Assessment of coral
δ44∕40Ca as a paleoclimate proxy in the Great Barrier Reef of Australia, Chem. Geol., 435, 71–78, https://doi.org/10.1016/j.chemgeo.2016.04.024, 2016.
Clarke, H., D'Olivo, J. P., Falter, J., Zinke, J., Lowe, R., and McCulloch, M.: Differential response of corals to regional mass-warming events as evident from skeletal Sr/Ca and Mg/Ca ratios, Geochem. Geophy. Geosy., 18, 1794–1809, https://doi.org/10.1002/2016GC006788, 2017.
Clode, P. and Marshall, A.: Low temperature FESEM of the calcifying interface of a scleractinian coral, Tissue and Cell, 34, 187–198, https://doi.org/10.1016/S0040-8166(02)00031-9, 2002.
Clode, P. L., Lema, K., Saunders, M., and Weiner, S.: Skeletal mineralogy of newly settling
Acropora millepora (Scleractinia) coral recruits, Coral Reefs, 30, 1–8, https://doi.org/10.1007/s00338-010-0673-7, 2011.
Cohen, A. L. and Holcomb, M.: Why corals care about ocean acidification: uncovering the mechanism, Oceanography, 22, 118–127, https://doi.org/10.5670/oceanog.2009.102, 2009.
Comeau, S., Tambutté, E., Carpenter, R. C., Edmunds, P. J., Evensen, N. R., Allemand, D., Ferrier-Pagès, C., Tambutté, S., and Venn, A. A.: Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH, Proceedings of the Royal Society of London B: Biological Sciences, 284, 2017.
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value of ecosystem services, Glob. Environ. Chang., 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014.
Dandeu, A., Humbert, B., Carteret, C., Muhr, H., Plasari, E., and Bossoutrot, J. M.: Raman Spectroscopy – A Powerful Tool for the Quantitative Determination of the Composition of Polymorph Mixtures: Application to CaCO
3 Polymorph Mixtures, Chem. Eng. Technol., 29, 221–225, https://doi.org/10.1002/ceat.200500354, 2006.
DeCarlo, T. M.: Data and code for “Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy”, available at: https://doi.org/10.5281/zenodo.1035493 (last access: November 2017), 2017.
DeCarlo, T. M.: Code for “Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy”, available at: https://doi.org/10.24433/CO.ff54fd98-a010-43f5-ad6a-c10c675387fc (last access: November 2017), 2017.
DeCarlo, T. M. and Cohen, A. L.: coralCT: software tool to analyze computerized tomography (CT) scans of coral skeletal cores for calcification and bioerosion rates, available at: https://doi.org/10.5281/zenodo.57855 (last access: November 2017), 2016.
DeCarlo, T. M., Gaetani, G. A., Holcomb, M., and Cohen, A. L.: Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton, Geochim. Cosmochim. Ac., 162, 151–165, https://doi.org/10.1016/j.gca.2015.04.016, 2015.
Dickson, A. G.: Standard potential of the reaction: AgCl (s)+ 1/2H
2 (g)= Ag (s)+ HCl (aq), and the standard acidity constant of the ion HSO
4− in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodynam., 22, 113–127, 1990.
D'Olivo, J. P. and McCulloch, M. T.: Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress, Scientific Reports, 7, 2207, 2017.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: the other CO
2 problem, Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nature Clim. Change, 1, 165–169, 2011.
Foster, T. and Clode, P. L.: Skeletal mineralogy of coral recruits under high temperature and
pCO
2, Biogeosciences, 13, 1717–1722, https://doi.org/10.5194/bg-13-1717-2016, 2016.
Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L., and McCulloch, M. T.: Effect of ocean warming and acidification on the early life stages of subtropical
Acropora spicifera, Coral Reefs, 34, 1217–1226, https://doi.org/10.1007/s00338-015-1342-7, 2015.
Foster, T., Falter, J. L., McCulloch, M. T., and Clode, P. L.: Ocean acidification causes structural deformities in juvenile coral skeletons, Science Advances, 2, e1501130, https://doi.org/10.1126/sciadv.1501130, 2016.
Gaetani, G. A. and Cohen, A. L.: Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, Geochim. Cosmochim. Ac., 70, 4617–4634, https://doi.org/10.1016/j.gca.2006.07.008, 2006.
Gaetani, G. A., Cohen, A. L., Wang, Z., and Crusius, J.: Rayleigh-Based, Multi-Element Coral Thermometry: a Biomineralization Approach to Developing Climate Proxies, Geochim. Cosmochim. Ac., 75, 1920–1932, https://doi.org/10.1016/j.gca.2011.01.010, 2011.
Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier, R.: Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 37–46, https://doi.org/10.1016/S0921-8181(98)00035-6, 1998.
Gattuso, J. P., Allemand, D., and Frankignoulle, M.: Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry, Am. Zool., 39, 160–183, https://doi.org/10.1093/icb/39.1.160, 1999.
Georgiou, L., Falter, J., Trotter, J., Kline, D. I., Holcomb, M., Dove, S. G., Hoegh-Guldberg, O., and McCulloch, M.: pH homeostasis during coral calcification in a free ocean CO
2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef, P. Natl. Acad. Sci., 112, 13219–13224, https://doi.org/10.1073/pnas.1505586112, 2015.
Gothmann, A. M., Bender, M. L., Blättler, C. L., Swart, P. K., Giri, S. J., Adkins, J. F., Stolarski, J., and Higgins, J. A.: Calcium isotopes in scleractinian fossil corals since the Mesozoic: Implications for vital effects and biomineralization through time, Earth Planet. Sc. Lett., 444, 205–214, https://doi.org/10.1016/j.epsl.2016.03.012, 2016.
Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Böhm, F., Spero, H. J., Lea, D. W., Bijma, J., and Nägler, T. F.: Model for kinetic effects on calcium isotope fractionation (
δ44Ca) in inorganic aragonite and cultured planktonic foraminifera, Geochim. Cosmochim. Ac., 67, 1375–1382, https://doi.org/10.1016/S0016-7037(02)01296-6, 2003.
Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B. M., Reitner, J., Wörheide, G., and Dullo, W.-C.: Calcium isotope fractionation in calcite and aragonite, Geochim. Cosmochim. Ac., 69, 4485–4494, https://doi.org/10.1016/j.gca.2005.06.003, 2005.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D., Cobb, K. M., Douville, E., DeMenocal, P., Eisenhauer, A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue, M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor, H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier, H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W., Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Hennige, S. J., Morrison, C. L., Form, A. U., Büscher, J., Kamenos, N. A., and Roberts, J. M.: Self-recognition in corals facilitates deep-sea habitat engineering, Scientific Reports, 4, 6782, https://doi.org/10.1038/srep06782, 2014.
Hennige, S. J., Wicks, L. C., Kamenos, N. A., Perna, G., Findlay, H. S., and Roberts, J. M.: Hidden impacts of ocean acidification to live and dead coral framework., Proceedings Biological sciences / The Royal Society, 282, 20150 990, https://doi.org/10.1098/rspb.2015.0990, 2015.
Hippler, D., Schmitt, A.-D., Gussone, N., Heuser, A., Stille, P., Eisenhauer, A., and Nägler, T. F.: Calcium Isotopic Composition of Various Reference Materials and Seawater, Geostand. Geoanal. Res., 27, 13–19, https://doi.org/10.1111/j.1751-908X.2003.tb00709.x, 2003.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., and Caldeira, K.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, https://doi.org/10.1126/science.1152509, 2007.
Hoegh-Guldberg, O., Cai, R., Poloczanska, E., Brewer, P., Sundby, S., Helmi, K., Fabry, V., and Jung, S.: The Ocean, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group 2 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Barros, V., Field, C., Dokken, D., Mastrandrea, M., Mach, K., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., Girma, B., Kissel, E., Levy, A., MacCracken, S., Mastrandrea, P., and White, L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
Holcomb, M., Venn, A. A., Tambutté, E., Tambutté, S., Allemand, D., Trotter, J., and McCulloch, M.: Coral calcifying fluid pH dictates response to ocean acidification, Scientific Reports, 4, 2014.
Holcomb, M., DeCarlo, T., Gaetani, G., and McCulloch, M.: Factors affecting B/Ca ratios in synthetic aragonite, Chem. Geol., 437, 67–76, https://doi.org/10.1016/j.chemgeo.2016.05.007, 2016.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., and Greene, S. E.: The geological record of ocean acidification, Science, 335, 1058–1063, https://doi.org/10.1126/science.1208277, 2012.
Inoue, M., Gussone, N., Koga, Y., Iwase, A., Suzuki, A., Sakai, K., and Kawahata, H.: Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments, Geochim. Cosmochim. Ac., 167, 80–92, https://doi.org/10.1016/j.gca.2015.06.009, 2015.
Kamenos, N. A., Burdett, H. L., Aloisio, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S., and Calosi, P.: Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification, Glob. Change Biol., 19, 3621–3628, 2013.
Kamenos, N. A., Perna, G., Gambi, M. C., Micheli, F., and Kroeker, K. J.: Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size, Proceedings of the Royal Society of London B: Biological Sciences, 283, 2016.
Kinsman, D. J. J. and Holland, H. D.: The co-precipitation of cations with CaCO
3-IV. The co-precipitation of Sr
2+ with aragonite between 16 and 96 C, Geochim. Cosmochim. Ac., 33, 1–17, https://doi.org/10.1016/0016-7037(69)90089-1, 1969.
Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., and Caley, M.: Coral Reef Biodiversity, in: Life in the World's Oceans: Diversity, Distribution, and Abundance, 2010.
Kubota, K., Yokoyama, Y., Ishikawa, T., and Suzuki, A.: A new method for calibrating a boron isotope paleo-pH proxy using massive
Porites corals, Geochem. Geophy. Geosy., 16, 3333–3342, https://doi.org/10.1002/2015GC005975, 2015.
Levitus, S.: NOAA Atlas NESDIS 68-71, US Government Printing Office, Washington, D.C., 2010.
Lin, F., Sum, A. K., and Bodnar, R. J.: Correlation of methane Raman
ν1 band position with fluid density and interactions at the molecular level, J. Raman Spectrosc., 38, 1510–1515, https://doi.org/10.1002/jrs.1804, 2007.
Lough, J.: Coral calcification from skeletal records revisited, Mar. Ecol. Prog. Ser., 373, 257–264, https://doi.org/10.3354/meps07398, 2008.
McConnaughey, T.:
13C and
18O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Ac., 53, 151–162, https://doi.org/10.1016/0016-7037(89)90282-2, 1989.
McCulloch, M. T., Falter, J., Trotter, J., and Montagna, P.: Coral resilience to ocean acidification and global warming through pH up-regulation, Nature Climate Change, 2, 623–627, 2012.
McCulloch, M. T., Holcomb, M., Rankenburg, K., and Trotter, J. A.: Rapid, high-precision measurements of boron isotopic compositions in marine carbonates, Rap. Commun. Mass Spectrom., 28, 2704–2712, https://doi.org/10.1002/rcm.7065, 2014.
McCulloch, M. T., D'Olivo Cordero, J. P., Falter, J., Holcomb, M., and Trotter, J. A.: Coral calcification in a changing World: the interactive dynamics of pH and DIC up-regulation, Nature Commun., 8, 15686, https://doi.org/10.1038/ncomms15686, 2017.
McElderry, J.-D. P., Zhu, P., Mroue, K. H., Xu, J., Pavan, B., Fang, M., Zhao, G., McNerny, E., Kohn, D. H., Franceschi, R. T., Holl, M. M., Tecklenburg, M. M., Ramamoorthy, A., and Morris, M. D.: Crystallinity and compositional changes in carbonated apatites: Evidence from
31P solid-state NMR, Raman, and AFM analysis, J. Solid State Chem., 206, 192–198, https://doi.org/10.1016/j.jssc.2013.08.011, 2013.
Montagna, P., McCulloch, M., Douville, E., López Correa, M., Trotter, J., Rodolfo-Metalpa, R., Dissard, D., Ferrier-Pagès, C., Frank, N., Freiwald, A., Goldstein, S., Mazzoli, C., Reynaud, S., Rüggeberg, A., Russo, S., and Taviani, M.: Li/Mg systematics in scleractinian corals: Calibration of the thermometer, Geochim. Cosmochim. Ac., 132, 288–310, https://doi.org/10.1016/j.gca.2014.02.005, 2014.
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B.: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contributions to Mineralogy and Petrology, 141, 125–144, https://doi.org/10.1007/s004100000235, 2001.
Nehrke, G., Reichart, G., Van Cappellen, P., Meile, C., and Bijma, J.: Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth, Geochim. Cosmochim. Ac., 71, 2240–2249, https://doi.org/10.1016/J.GCA.2007.02.002, 2007.
Nehrke, G. and Nouet, J.: Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina), Biogeosciences, 8, 3761–3769, https://doi.org/10.5194/bg-8-3761-2011, 2011.
Okai, T., Suzuki, A., Kawahata, H., Terashima, S., and Imai, N.: Preparation of a New Geological Survey of Japan Geochemical Reference Material: Coral JCp-1, Geostandards Newsletter, 26, 95–99, https://doi.org/10.1111/j.1751-908X.2002.tb00627.x, 2002.
Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.: Projecting coral reef futures under global warming and ocean acidification, Science, 333, 418–422, 2011.
Pauly, M., Kamenos, N. A., Donohue, P., and LeDrew, E.: Coralline algal Mg-O bond strength as a marine
pCO
2 proxy, Geology, 43, 267–270, https://doi.org/10.1130/G36386.1, 2015.
Perrin, J., Vielzeuf, D., Laporte, D., Ricolleau, A., Rossman, G. R., and Floquet, N.: Raman characterization of synthetic magnesian calcites, American Mineralogist, 101, 2525–2538, 2016.
Raybaud, V., Tambutté, S., Ferrier-Pagès, C., Reynaud, S., Venn, A. A., Tambutté, É., Nival, P., and Allemand, D.: Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification, J. Theor. Biol., 424, 26–36, https://doi.org/10.1016/j.jtbi.2017.04.028, 2017.
R Core Team: R: A language and environment for statistical computing, 2016.
Ries, J. B.: A physicochemical framework for interpreting the biological calcification response to CO
2-induced ocean acidification, Geochim. Cosmochim. Ac., 75, 4053–4064, 2011.
Roger, L. M., George, A. D., Shaw, J., Hart, R. D., Roberts, M., Becker, T., McDonald, B. J., and Evans, N. J.: Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia, Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, 2017.
Shamberger, K. E., Cohen, A. L., Golbuu, Y., McCorkle, D. C., Lentz, S. J., and Barkley, H. C.: Diverse coral communities in naturally acidified waters of a Western Pacific reef, Geophys. Res. Lett., 41, 499–504, https://doi.org/10.1002/2013GL058489, 2014.
Smith, E. and Dent, G.: Modern Raman spectroscopy: a practical approach, John Wiley & Sons, West Sussex, England, 2005.
Stock, S. R., Veis, A., Xiao, X., Almer, J. D., and Dorvee, J. R.: Sea urchin tooth mineralization: Calcite present early in the aboral plumula, J. Struct. Biol., 180, 280–289, https://doi.org/10.1016/j.jsb.2012.08.004, 2012.
Stolarski, J., Bosellini, F. R., Wallace, C. C., Gothmann, A. M., Mazur, M., Domart-Coulon, I., Gutner-Hoch, E., Neuser, R. D., Levy, O., Shemesh, A., and Meibom, A.: A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change., Scientific Reports, 6, 27579, https://doi.org/10.1038/srep27579, 2016.
Tambutté, E., Tambutté, S., Segonds, N., Zoccola, D., Venn, A., Erez, J., and Allemand, D.: Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification, Proceedings of the Royal Society B: Biological Sciences, 279, 19–27, https://doi.org/10.1098/rspb.2011.0733, 2012.
Tambutté, E., Venn, A. A., Holcomb, M., Segonds, N., Techer, N., Zoccola, D., Allemand, D., and Tambutté, S.: Morphological plasticity of the coral skeleton under CO
2-driven seawater acidification, Nature Communications, 6, 7368, https://doi.org/10.1038/ncomms8368, 2015.
Trotter, J., Montagna, P., McCulloch, M., Silenzi, S., Reynaud, S., Mortimer, G., Martin, S., Ferrier-Pagès, C., Gattuso, J. P., and Rodolfo-Metalpa, R.: Quantifying the pH 'vital effect' in the temperate zooxanthellate coral
Cladocora caespitosa: Validation of the boron seawater pH proxy, Earth Planet. Sc. Lett., 303, 163–173, 2011.
Váczi, T.: A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles, Appl. Spectrosc., 68, 1274–1278, https://doi.org/10.1366/13-07275, 2014.
Venn, A., Tambutte, E., Holcomb, M., Allemand, D., and Tambutte, S.: Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater, PLoS One, 6, e20013, https://doi.org/10.1371/journal.pone.0020013, 2011.
Wall, M. and Nehrke, G.: Reconstructing skeletal fiber arrangement and growth mode in the coral
Porites lutea (Cnidaria, Scleractinia): a confocal Raman microscopy study, Biogeosciences, 9, 4885–4895, https://doi.org/10.5194/bg-9-4885-2012, 2012.
Wang, D., Hamm, L. M., Bodnar, R. J., and Dove, P. M.: Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates, J. Raman Spectrosc., 43, 543–548, 2012.
Watson, E. B.: A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals, Geochim. Cosmochim. Ac., 68, 1473–1488, 2004.
Wehrmeister, U., Soldati, A. L., Jacob, D. E., Häger, T., and Hofmeister, W.: Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study, J. Raman Spectrosc., 41, 193–201, https://doi.org/10.1002/jrs.2438, 2009.
Weisstein, E.: Gaussian Function, available at: http://mathworld.wolfram.com/GaussianFunction.html (last access: November 2017), 2017.
White, W.: The carbonate minerals, in: The Infra-red Spectra of minerals, edited by: Farmer, V., 227–284, Mineralogical Society, London, 1974.
Wu, H. C., Dissard, D., Le Cornec, F., Thil, F., Tribollet, A., Moya, A., and Douville, E.: Primary Life Stage Boron Isotope and Trace Elements Incorporation in Aposymbiotic
Acropora millepora Coral under Ocean Acidification and Warming, Front. Mar. Sci., 4, 129, https://doi.org/10.3389/fmars.2017.00129, 2017.
Zakaria, F. Z., Mihály, J., Sajó, I., Katona, R., Hajba, L., Aziz, F. A., and Mink, J.: FT-Raman and FTIR spectroscopic characterization of biogenic carbonates from Philippine venus seashell and
Porites sp. coral, J. Raman Spectrosc., 39, 1204–1209, https://doi.org/10.1002/jrs.1964, 2008.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release rate unprecedented during the past 66 million years, Nature Geoscience, 9, 325–329, https://doi.org/10.1038/ngeo2681, 2016.