Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 14, 1461-1492, 2017
https://doi.org/10.5194/bg-14-1461-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
24 Mar 2017
Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment
Laura A. Casella1, Erika Griesshaber1, Xiaofei Yin1, Andreas Ziegler2, Vasileios Mavromatis3,4, Dirk Müller1, Ann-Christine Ritter5, Dorothee Hippler3, Elizabeth M. Harper6, Martin Dietzel3, Adrian Immenhauser5, Bernd R. Schöne7, Lucia Angiolini8, and Wolfgang W. Schmahl1 1Department of Earth and Environmental Sciences and GeoBioCenter, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
2Central Facility for Electron Microscopy, University of Ulm, 89081 Ulm, Germany
3Institute of Applied Geosciences, Graz University of Technology, Graz, 8010, Austria
4Géosciences Environnement Toulouse (GET), CNRS, 31400 Toulouse, France
5Institute for Geology, Mineralogy and Geophysics, Ruhr University Bochum, 44801 Bochum, Germany
6Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
7Institute of Geosciences, University of Mainz, 55128 Mainz, Germany
8Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, 20133 Milan, Italy
Abstract. Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features.

In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite–calcite transition occurs via an interface-coupled dissolution–reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.


Citation: Casella, L. A., Griesshaber, E., Yin, X., Ziegler, A., Mavromatis, V., Müller, D., Ritter, A.-C., Hippler, D., Harper, E. M., Dietzel, M., Immenhauser, A., Schöne, B. R., Angiolini, L., and Schmahl, W. W.: Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment, Biogeosciences, 14, 1461-1492, https://doi.org/10.5194/bg-14-1461-2017, 2017.
Publications Copernicus
Download
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as...
Share