Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 6
Biogeosciences, 14, 1383–1401, 2017
https://doi.org/10.5194/bg-14-1383-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 1383–1401, 2017
https://doi.org/10.5194/bg-14-1383-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Mar 2017

Research article | 20 Mar 2017

Drivers of multi-century trends in the atmospheric CO2 mean annual cycle in a prognostic ESM

Jessica Liptak et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (09 Sep 2016) by Laurent Bopp
AR by Jessica Liptak on behalf of the Authors (21 Oct 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (04 Nov 2016) by Laurent Bopp
RR by Anonymous Referee #2 (11 Jan 2017)
ED: Publish subject to minor revisions (Editor review) (16 Jan 2017) by Laurent Bopp
AR by Jessica Liptak on behalf of the Authors (10 Feb 2017)  Author's response    Manuscript
ED: Publish as is (21 Feb 2017) by Laurent Bopp
Publications Copernicus
Download
Short summary
We analyzed the evolution of the atmospheric CO2 mean annual cycle simulated during 1950–2300 under three scenarios designed to separate the effects of climate change, CO2 fertilization, and land use change. CO2 fertilization in boreal and temperate ecosystems drove mean annual cycle amplification over the NH midlatitudes during 1950–2300. Boreal and Arctic climate change drove high-latitude amplification before 2200, after which CO2 fertilization contributed nearly equally to amplification.
We analyzed the evolution of the atmospheric CO2 mean annual cycle simulated during 1950–2300...
Citation