Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 5
Biogeosciences, 14, 1123–1152, 2017
https://doi.org/10.5194/bg-14-1123-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Progress in quantifying ocean biogeochemistry – in honour...

Biogeosciences, 14, 1123–1152, 2017
https://doi.org/10.5194/bg-14-1123-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Mar 2017

Research article | 09 Mar 2017

Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese

Marco van Hulten et al.
Related authors  
A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1)
Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman
Geosci. Model Dev., 11, 3537–3556, https://doi.org/10.5194/gmd-11-3537-2018,https://doi.org/10.5194/gmd-11-3537-2018, 2018
Short summary
Variable reactivity of particulate organic matter in a global ocean biogeochemical model
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017,https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium*
M. M. P. van Hulten, A. Sterl, R. Middag, H. J. W. de Baar, M. Gehlen, J.-C. Dutay, and A. Tagliabue
Biogeosciences, 11, 3757–3779, https://doi.org/10.5194/bg-11-3757-2014,https://doi.org/10.5194/bg-11-3757-2014, 2014
Related subject area  
Biogeochemistry: Modelling, Aquatic
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019,https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019,https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019,https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Oxygen dynamics and evaluation of the single station diel oxygen model across contrasting geologies
Simon J. Parker
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-60,https://doi.org/10.5194/bg-2019-60, 2019
Revised manuscript accepted for BG
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modelling approach
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-152,https://doi.org/10.5194/bg-2019-152, 2019
Revised manuscript accepted for BG
Short summary
Cited articles  
Aguilar-Islas, A. and Bruland, K.: Dissolved manganese and silicic acid in the Columbia River plume, Mar. Chem., 101, 233–247, https://doi.org/10.1016/j.marchem.2006.03.005, 2006.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Baker, A., Jickells, T., Witt, M., and Linge, K.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean, Mar. Chem., 98, 43–58, https://doi.org/10.1016/j.marchem.2005.06.004, 2006.
Baker, A. R., Landing, W. M., Bucciarelli, E., Cheize, M., Fietz, S., Hayes, C. T., Kadko, D., Morton, P. L., Rogan, N., Sarthou, G., Shelley, R. U., Shi, Z., Shiller, A., and van Hulten, M. M. P.: Trace element and isotope deposition across the air–sea interface: progress and research needs, Phil. Trans. R. Soc. A: Mathematical, Phys. Eng. Sci., 374, 2081, https://doi.org/10.1098/rsta.2016.0190, 2016.
Publications Copernicus
Download
Short summary
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our model shows that (i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO2 of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient. (ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our...
Citation