Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 13, issue 14 | Copyright
Biogeosciences, 13, 4291-4313, 2016
https://doi.org/10.5194/bg-13-4291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jul 2016

Research article | 29 Jul 2016

Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

Gianluca Tramontana et al.
Related authors
Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685-3703, https://doi.org/10.5194/bg-14-3685-2017,https://doi.org/10.5194/bg-14-3685-2017, 2017
Related subject area
Biogeochemistry: Modelling, Terrestrial
Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation
Istem Fer, Ryan Kelly, Paul R. Moorcroft, Andrew D. Richardson, Elizabeth M. Cowdery, and Michael C. Dietze
Biogeosciences, 15, 5801-5830, https://doi.org/10.5194/bg-15-5801-2018,https://doi.org/10.5194/bg-15-5801-2018, 2018
Controls of terrestrial ecosystem nitrogen loss on simulated productivity responses to elevated CO2
Johannes Meyerholt and Sönke Zaehle
Biogeosciences, 15, 5677-5698, https://doi.org/10.5194/bg-15-5677-2018,https://doi.org/10.5194/bg-15-5677-2018, 2018
The impact of spatiotemporal variability in atmospheric CO2 concentration on global terrestrial carbon fluxes
Eunjee Lee, Fan-Wei Zeng, Randal D. Koster, Brad Weir, Lesley E. Ott, and Benjamin Poulter
Biogeosciences, 15, 5635-5652, https://doi.org/10.5194/bg-15-5635-2018,https://doi.org/10.5194/bg-15-5635-2018, 2018
Microbial decomposition processes and vulnerable arctic soil organic carbon in the 21st century
Junrong Zha and Qianlai Zhuang
Biogeosciences, 15, 5621-5634, https://doi.org/10.5194/bg-15-5621-2018,https://doi.org/10.5194/bg-15-5621-2018, 2018
Diffusion limitations and Michaelis–Menten kinetics as drivers of combined temperature and moisture effects on carbon fluxes of mineral soils
Fernando Esteban Moyano, Nadezda Vasilyeva, and Lorenzo Menichetti
Biogeosciences, 15, 5031-5045, https://doi.org/10.5194/bg-15-5031-2018,https://doi.org/10.5194/bg-15-5031-2018, 2018
Cited articles
Alonso Fernández, J. R., Díaz-Muñiza, C., Garcia Nieto, P. J., de Cos, Juez, F. J., Sánchez, Lasheras, F., and Roqueñíc, M. N.: Forecasting the cyanotoxins presence in fresh waters: A new model based on genetic algorithms combined with the MARS technique, Ecol. Eng., 53, 68–78, https://doi.org/10.1016/j.ecoleng.2012.12.015, 2013.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the cmip5 earth system models, J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht Heidelberg London New York, 460 pp., 2012.
Baldocchi, D.: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, https://doi.org/10.1071/BT07151, 2008.
Publications Copernicus
Download
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to...
Citation
Share