Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 13, issue 14
Biogeosciences, 13, 4291-4313, 2016
https://doi.org/10.5194/bg-13-4291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 13, 4291-4313, 2016
https://doi.org/10.5194/bg-13-4291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jul 2016

Research article | 29 Jul 2016

Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

Gianluca Tramontana et al.
Related authors  
Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685-3703, https://doi.org/10.5194/bg-14-3685-2017,https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Related subject area  
Biogeochemistry: Modelling, Terrestrial
Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization
Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 16, 663-680, https://doi.org/10.5194/bg-16-663-2019,https://doi.org/10.5194/bg-16-663-2019, 2019
Short summary
Neglecting plant–microbe symbioses leads to underestimation of modeled climate impacts
Mingjie Shi, Joshua B. Fisher, Richard P. Phillips, and Edward R. Brzostek
Biogeosciences, 16, 457-465, https://doi.org/10.5194/bg-16-457-2019,https://doi.org/10.5194/bg-16-457-2019, 2019
Short summary
A simple time-stepping scheme to simulate leaf area index, phenology, and gross primary production across deciduous broadleaf forests in the eastern United States
Qinchuan Xin, Yongjiu Dai, and Xiaoping Liu
Biogeosciences, 16, 467-484, https://doi.org/10.5194/bg-16-467-2019,https://doi.org/10.5194/bg-16-467-2019, 2019
Short summary
Quantifying global N2O emissions from natural ecosystem soils using trait-based biogeochemistry models
Tong Yu and Qianlai Zhuang
Biogeosciences, 16, 207-222, https://doi.org/10.5194/bg-16-207-2019,https://doi.org/10.5194/bg-16-207-2019, 2019
Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
Debsunder Dutta, David S. Schimel, Ying Sun, Christiaan van der Tol, and Christian Frankenberg
Biogeosciences, 16, 77-103, https://doi.org/10.5194/bg-16-77-2019,https://doi.org/10.5194/bg-16-77-2019, 2019
Short summary
Cited articles  
Alonso Fernández, J. R., Díaz-Muñiza, C., Garcia Nieto, P. J., de Cos, Juez, F. J., Sánchez, Lasheras, F., and Roqueñíc, M. N.: Forecasting the cyanotoxins presence in fresh waters: A new model based on genetic algorithms combined with the MARS technique, Ecol. Eng., 53, 68–78, https://doi.org/10.1016/j.ecoleng.2012.12.015, 2013.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the cmip5 earth system models, J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht Heidelberg London New York, 460 pp., 2012.
Baldocchi, D.: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, https://doi.org/10.1071/BT07151, 2008.
Publications Copernicus
Download
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to...
Citation