Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 12, issue 13
Biogeosciences, 12, 4051-4066, 2015
https://doi.org/10.5194/bg-12-4051-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 12, 4051-4066, 2015
https://doi.org/10.5194/bg-12-4051-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Jul 2015

Research article | 07 Jul 2015

High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing

M. Thyssen1,a, S. Alvain1, A. Lefèbvre2, D. Dessailly1, M. Rijkeboer4, N. Guiselin1, V. Creach3, and L.-F. Artigas1 M. Thyssen et al.
  • 1Université Lille Nord de France, CNRS UMR8187 Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, MREN, 32 Avenue Foch, 62930 Wimereux, France
  • 2Laboratoire Environnement Ressources (LER), 150 quai Gambetta, 62200, Boulogne sur Mer, France
  • 3The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, NR33 0HT Lowestoft, UK
  • 4RWS Centre for Water Management, Laboratory for Hydrobiological Analysis, Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
  • anow at: Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille, France

Abstract. Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of its biomass and dynamics will help to understand ocean ecosystems and refine global climate models. Relevant data sets of phytoplankton defined at a functional level and on a sub-meso- and daily scale are thus required. In order to achieve this, an automated, high-frequency, dedicated scanning flow cytometer (SFC, Cytobuoy b.v., the Netherlands) has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a PocketFerryBox during a cruise in the North Sea, 08–12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analysing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. For the first time, the community structure observed from the automated flow cytometry data set was compared with PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high-frequency in situ sampling and remote sensing was found to be more than 2 times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the 2 days for which matchups were available suggest that it is possible to label PHYSAT anomalies using automated flow cytometry to resolve not only dominant groups but also community structure.

Publications Copernicus
Download
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
Phytoplankton community structure at a high spatial resolution (3km) was studied in the North...
Citation
Share