Volume 11, issue 19 | Copyright
Biogeosciences, 11, 5411-5424, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Oct 2014

Research article | 07 Oct 2014

Quantifying the effects of clear-cutting and strip-cutting on nitrate dynamics in a forested watershed using triple oxygen isotopes as tracers

U. Tsunogai et al.
Related authors
Export flux of unprocessed atmospheric nitrate from temperate forested catchments: A possible new index for nitrogen saturation
Fumiko Nakagawa, Urumu Tsunogai, Yusuke Obata, Kenta Ando, Naoyuki Yamashita, Tatsuyoshi Saito, Shigeki Uchiyama, Masayuki Morohashi, and Hiroyuki Sase
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-258,https://doi.org/10.5194/bg-2018-258, 2018
Manuscript under review for BG
Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition
David M. Nelson, Urumu Tsunogai, Dong Ding, Takuya Ohyama, Daisuke D. Komatsu, Fumiko Nakagawa, Izumi Noguchi, and Takashi Yamaguchi
Atmos. Chem. Phys., 18, 6381-6392, https://doi.org/10.5194/acp-18-6381-2018,https://doi.org/10.5194/acp-18-6381-2018, 2018
Accurate and precise quantification of atmospheric nitrate in streams draining land of various uses by using triple oxygen isotopes as tracers
Urumu Tsunogai, Takanori Miyauchi, Takuya Ohyama, Daisuke D. Komatsu, Fumiko Nakagawa, Yusuke Obata, Keiichi Sato, and Tsuyoshi Ohizumi
Biogeosciences, 13, 3441-3459, https://doi.org/10.5194/bg-13-3441-2016,https://doi.org/10.5194/bg-13-3441-2016, 2016
Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water
F. Nakagawa, A. Suzuki, S. Daita, T. Ohyama, D. D. Komatsu, and U. Tsunogai
Biogeosciences, 10, 3547-3558, https://doi.org/10.5194/bg-10-3547-2013,https://doi.org/10.5194/bg-10-3547-2013, 2013
Related subject area
Biogeochemistry: Stable Isotopes & Other Tracers
Estimation of isotope variation of N2O during denitrification by Pseudomonas aureofaciens and Pseudomonas chlororaphis: implications for N2O source apportionment
Joshua A. Haslun, Nathaniel E. Ostrom, Eric L. Hegg, and Peggy H. Ostrom
Biogeosciences, 15, 3873-3882, https://doi.org/10.5194/bg-15-3873-2018,https://doi.org/10.5194/bg-15-3873-2018, 2018
Immediate increase in isotopic enrichment in small mammals following the expansion of a great cormorant colony
Linas Balčiauskas, Raminta Skipitytė, Marius Jasiulionis, Laima Balčiauskienė, and Vidmantas Remeikis
Biogeosciences, 15, 3883-3891, https://doi.org/10.5194/bg-15-3883-2018,https://doi.org/10.5194/bg-15-3883-2018, 2018
Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh
Wu Sun, Kadmiel Maseyk, Céline Lett, and Ulli Seibt
Biogeosciences, 15, 3277-3291, https://doi.org/10.5194/bg-15-3277-2018,https://doi.org/10.5194/bg-15-3277-2018, 2018
The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations
Anne Alexandre, Amarelle Landais, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Sandrine Pauchet, Corinne Sonzogni, Martine Couapel, Marine Pasturel, Pauline Cornuault, Jingming Xin, Jean-Charles Mazur, Frédéric Prié, Ilhem Bentaleb, Elizabeth Webb, Françoise Chalié, and Jacques Roy
Biogeosciences, 15, 3223-3241, https://doi.org/10.5194/bg-15-3223-2018,https://doi.org/10.5194/bg-15-3223-2018, 2018
Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment
Philip M. Riekenberg, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 15, 2873-2889, https://doi.org/10.5194/bg-15-2873-2018,https://doi.org/10.5194/bg-15-2873-2018, 2018
Cited articles
Aleem, M. I. H., Hoch, G. E., and Varner, J. E.: Water as the source of oxidant and reductant in bacterial chemosynthesis, P. Natl. Acad. Sci. USA, 54, 869–873, 1965.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (\chem\Delta^{17O}) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Amberger, A. and Schmidt, H.-L.: Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft, Geochim. Cosmochim. Ac., 51, 2699–2705, 1987.
Andersson, K. K. and Hooper, A. B.: O2 and H2O are each the source of one O in \chemNO_2^- produced from NH3 by Nitrosomonas: 15N-NMR evidence, FEBS Lett., 164, 236–240, https://doi.org/10.1016/0014-5793(83)80292-0, 1983.
Aravena, R. and Robertson, W. D.: Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume, Groundwater, 36, 975–982, https://doi.org/10.1111/j.1745-6584.1998.tb02104.x, 1998.
Publications Copernicus