Biogeosciences, 9, 875-891, 2012
www.biogeosciences.net/9/875/2012/
doi:10.5194/bg-9-875-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
G. Keppel-Aleks1, P. O. Wennberg1, R. A. Washenfelder2, D. Wunch1, T. Schneider1, G. C. Toon4, R. J. Andres3, J.-F. Blavier4, B. Connor5, K. J. Davis6, A. R. Desai7, J. Messerschmidt8, J. Notholt8, C. M. Roehl1, V. Sherlock9, B. B. Stephens10, S. A. Vay11, and S. C. Wofsy12
1California Institute of Technology, Pasadena, CA, USA
2National Oceanic and Atmospheric Administration, Boulder, CO, USA
3Oak Ridge National Laboratory, Oak Ridge, TN, USA
4NASA Jet Propulsion Laboratory, Pasadena, CA, USA
5BC Consulting, New Zealand
6The Pennsylvania State University, University Park, PA, USA
7University of Wisconsin, Madison, WI, USA
8University of Bremen, Bremen, Germany
9National Institute of Water and Atmospheric Research, Wellington, New Zealand
10National Center for Atmospheric Research, Boulder, CO, USA
11NASA Langley Research Center, Langley, VA, USA
12Harvard University, Cambridge, MA, USA

Abstract. New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45–65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

Citation: Keppel-Aleks, G., Wennberg, P. O., Washenfelder, R. A., Wunch, D., Schneider, T., Toon, G. C., Andres, R. J., Blavier, J.-F., Connor, B., Davis, K. J., Desai, A. R., Messerschmidt, J., Notholt, J., Roehl, C. M., Sherlock, V., Stephens, B. B., Vay, S. A., and Wofsy, S. C.: The imprint of surface fluxes and transport on variations in total column carbon dioxide, Biogeosciences, 9, 875-891, doi:10.5194/bg-9-875-2012, 2012.
 
Search BG
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share