Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.700 IF 3.700
  • IF 5-year<br/> value: 4.477 IF 5-year
    4.477
  • SNIP value: 1.276 SNIP 1.276
  • IPP value: 3.933 IPP 3.933
  • SJR value: 1.933 SJR 1.933
  • h5-index value: 62 h5-index 62
Biogeosciences, 7, 1991-2011, 2010
http://www.biogeosciences.net/7/1991/2010/
doi:10.5194/bg-7-1991-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
23 Jun 2010
The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model
K. Thonicke1,2,3,*, A. Spessa1,4, I. C. Prentice1,5,6,7, S. P. Harrison2,6, L. Dong5, and C. Carmona-Moreno8 1formerly Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07701, Germany
2School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
3Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
4Grantham Institute for Climate Change, and Division of Biology, Imperial College, Silwood Park Campus, Ascot, SL5 7PY, UK
5Potsdam Institute for Climate Impact Research (PIK) e.V., Telegraphenberg A31, Potsdam, 14473, Germany
6National Centre for Atmospheric Sciences (NCAS), NCAS-Climate, University of Reading, Earley Gate, Reading, RG6 6BB, UK
7QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK
8Global Vegetation Monitoring Unit, Joint Research Centre Ispra, Ispra, Italy
*now at: Potsdam Institute for Climate Impact Research (PIK) e.V., Telegraphenberg A31, Potsdam, 14473, Germany
Abstract. A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
Please read the corrigendum first before accessing the article.


Citation: Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991-2011, doi:10.5194/bg-7-1991-2010, 2010.
Publications Copernicus
Download
Share