Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 6, 681-703, 2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
27 Apr 2009
Estimating the storage of anthropogenic carbon in the subtropical Indian Ocean: a comparison of five different approaches
M. Álvarez1, C. Lo Monaco2, T. Tanhua3, A. Yool4, A. Oschlies3, J. L. Bullister5, C. Goyet6, N. Metzl2, F. Touratier6, E. McDonagh4, and H. L. Bryden4 1IMEDEA (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Spain
2LOCEAN/IPSL, Université Paris 6 – place Jussieu 4, 75252 Paris, France
3IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
4NOCS, Waterfront Campus European Way, Southampton, SO14 3ZH, UK
5NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington, USA
6IMAGES, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France
Abstract. The subtropical Indian Ocean along 32° S was for the first time simultaneously sampled in 2002 for inorganic carbon and transient tracers. The vertical distribution and inventory of anthropogenic carbon (CANT) from five different methods: four data-base methods (ΔC*, TrOCA, TTD and IPSL) and a simulation from the OCCAM model are compared and discussed along with the observed CFC-12 and CCl4 distributions. In the surface layer, where carbon-based methods are uncertain, TTD and OCCAM yield the same result (7±0.2 molC m−2), helping to specify the surface CANT inventory. Below the mixed-layer, the comparison suggests that CANT penetrates deeper and more uniformly into the Antarctic Intermediate Water layer limit than estimated from the much utilized ΔC* method. Significant CFC-12 and CCl4 values are detected in bottom waters, associated with Antarctic Bottom Water. In this layer, except for ΔC* and OCCAM, the other methods detect significant CANT values. Consequently, the lowest inventory is calculated using the ΔC* method (24±2 molC m−2) or OCCAM (24.4±2.8 molC m−2) while TrOCA, TTD, and IPSL lead to higher inventories (28.1±2.2, 28.9±2.3 and 30.8±2.5 molC m−2 respectively). Overall and despite the uncertainties each method is evaluated using its relationship with tracers and the knowledge about water masses in the subtropical Indian Ocean. Along 32° S our best estimate for the mean CANT specific inventory is 28±2 molC m−2. Comparison exercises for data-based CANT methods along with time-series or repeat sections analysis should help to identify strengths and caveats in the CANT methods and to better constrain model simulations.

Citation: Álvarez, M., Lo Monaco, C., Tanhua, T., Yool, A., Oschlies, A., Bullister, J. L., Goyet, C., Metzl, N., Touratier, F., McDonagh, E., and Bryden, H. L.: Estimating the storage of anthropogenic carbon in the subtropical Indian Ocean: a comparison of five different approaches, Biogeosciences, 6, 681-703, doi:10.5194/bg-6-681-2009, 2009.
Publications Copernicus