Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 14, 1403-1417, 2017
http://www.biogeosciences.net/14/1403/2017/
doi:10.5194/bg-14-1403-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
26 Mar 2017
Forage quality declines with rising temperatures, with implications for livestock production and methane emissions
Mark A. Lee1, Aaron P. Davis1, Mizeck G. G. Chagunda2, and Pete Manning3 1Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
2Future Farming Systems, Scotland's Rural College, King's Buildings, Edinburgh EH9 3JG, UK
3Biodiversity and Climate Research Centre, Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Abstract. Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9 % with a 1 °C temperature rise and 4.5 % with a 5 °C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions may reduce this additional source of pastoral greenhouse gas emissions.

Citation: Lee, M. A., Davis, A. P., Chagunda, M. G. G., and Manning, P.: Forage quality declines with rising temperatures, with implications for livestock production and methane emissions, Biogeosciences, 14, 1403-1417, doi:10.5194/bg-14-1403-2017, 2017.
Publications Copernicus
Download
Short summary
We gathered data from published sources to assess the effects of growing conditions on the nutritive quality of grasses which feed livestock. Nutritive quality is important for livestock productivity and methane production. We found that forage nutritive quality was reduced at higher temperatures. We estimate that cattle methane production may increase in future due to temperature-driven reductions in forage quality. This is a positive climate feedback that further increases global temperatures.
We gathered data from published sources to assess the effects of growing conditions on the...
Share