Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 9, issue 12
Biogeosciences, 9, 5095-5109, 2012
https://doi.org/10.5194/bg-9-5095-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Low oxygen in marine environments from the Cretaceous to the...

Biogeosciences, 9, 5095-5109, 2012
https://doi.org/10.5194/bg-9-5095-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Dec 2012

Research article | 13 Dec 2012

Controlling factors of the oxygen balance in the Arabian Sea's OMZ

L. Resplandy1, M. Lévy2, L. Bopp1, V. Echevin2, S. Pous3, V. V. S. S. Sarma4, and D. Kumar4 L. Resplandy et al.
  • 1LSCE – Laboratoire des Sciences du Climat et de l'Environnement (CEA, CNRS, UVSQ), UMR8212, IPSL, France
  • 2LOCEAN – Laboratoire d'Océanographie et du Climat: Experimentation et Approches Numériques (CNRS, IRD, UPMC, MNHN), IPSL, France
  • 3Museum National d'Histoire Naturelle, Paris, France
  • 4National Institute of Oceanography, Goa, India

Abstract. The expansion of OMZs (oxygen minimum zones) due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that oxygen concentrations are modulated seasonally by coastal Kelvin waves and westward-propagating Rossby waves.

Whereas on seasonal time scales the sources and sinks of oxygen are dominated by the mean vertical and lateral advection (Ekman pumping and monsoonal currents), on annual time scales we find that the biological sink is counterbalanced by the supply of oxygen sustained by mesoscale structures (eddies and filaments). Eddy-driven advection hence promotes the vertical supply of oxygen along the western coast of the Arabian Sea and the lateral transport of ventilated waters offshore the coast of Oman and southwest India.

Publications Copernicus
Special issue
Download
Citation
Share