Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 6, 1405-1421, 2009
https://doi.org/10.5194/bg-6-1405-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
05 Aug 2009
Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network
M. Telszewski1, A. Chazottes2, U. Schuster1, A. J. Watson1, C. Moulin2, D. C. E. Bakker1, M. González-Dávila3, T. Johannessen4, A. Körtzinger5, H. Lüger6, A. Olsen4,8,9, A. Omar4, X. A. Padin7, A. F. Ríos7, T. Steinhoff5, M. Santana-Casiano3, D. W. R. Wallace5, and R. Wanninkhof6 1School of Environmental Sciences, University of East Anglia, Norwich, UK
2L'Institut Pierre-Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, Centre National de la Recherche Scientifique – Commissariat à l'Énergie Atomique, Gif-sur-Yvette, France
3Department of Marine Chemistry, Universidad de Las Palmas de Gran Canaria, Las Palmas, Gran Canaria, Spain
4Geophysical Institute, University of Bergen, Bergen, Norway
5Leibniz Institute of Marine Sciences, Kiel, Germany
6Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
7Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
8Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway
9Marine Chemistry, Departement of Chemistry, University of Göterborg, Göteborg, Sweden
Abstract. Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFS-MODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437 μatm. The root mean square error (RMSE) of the neural network fit to the data is 11.6 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.

Citation: Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., and Wanninkhof, R.: Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network, Biogeosciences, 6, 1405-1421, https://doi.org/10.5194/bg-6-1405-2009, 2009.
Publications Copernicus
Download
Share