Temporal variability of the anthropogenic CO$_2$ storage in the Irminger Sea

F. F. Pérez1, M. Vázquez-Rodríguez1, E. Louarn2,3, X. A. Padín1, H. Mercier4, and A. F. Ríos1

1Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
2Laboratoire de Chimie Marine, Institut Universitaire Européen de la Mer, Plouzané, France
3Station Biologique de Roscoff, CNRS UPMC, B.P. 74, 29682 Roscoff, France
4Laboratoire de Physique des Océans, CNRS Ifremer IRD UBO, IFREMER Centre de Brest, B.P. 70, 29280 Plouzané, France

Received: 29 February 2008 – Published in Biogeosciences Discuss.: 11 April 2008
Revised: 14 November 2008 – Accepted: 14 November 2008 – Published: 11 December 2008

Abstract. The anthropogenic CO$_2$ (C$_{ant}$) estimates from cruises spanning more than two decades (1981–2006) in the Irminger Sea area of the North Atlantic Subpolar Gyre reveal a large variability in the C$_{ant}$ storage rates. During the early 1990’s, the C$_{ant}$ storage rates (2.3±0.6 mol C m$^{-2}$ yr$^{-1}$) doubled the average rate for 1981–2006 (1.1±0.1 mol C m$^{-2}$ yr$^{-1}$), whilst a remarkable drop to almost half that average followed from 1997 onwards. The C$_{ant}$ storage evolution runs parallel to chlorofluorocarbon-12 inventories and is in good agreement with C$_{ant}$ uptake rates of increase calculated from sea surface pCO$_2$ measurements. The contribution of the Labrador Seawater to the total inventory of C$_{ant}$ in the Irminger basin dropped from 66% in the early 1990’s to 49% in the early 2000’s. The North Atlantic Oscillation shift from a positive to a negative phase in 1996 led to a reduction of air-sea heat loss in the Labrador Sea. The consequent convection weakening accompanied by an increase in stratification has lowered the efficiency of the northern North Atlantic CO$_2$ sink.

1 Introduction

The ocean is a CO$_2$ sink that during the 1990s has removed 2.2±0.4 Pg C yr$^{-1}$ from the atmosphere out of the total 8.0±0.5 Pg yr$^{-1}$ of anthropogenic carbon (C$_{ant}$) emitted to the atmosphere directly from human activities (Canadell et al., 2007). The North Atlantic Subpolar Gyre (NASPG) has the largest C$_{ant}$ inventory per unit area (∼80 mol C m$^{-2}$ on average) of all oceans, holding 38% of the oceanic C$_{ant}$ inventory (Sabine et al., 2004). The key mechanism responsible for this large CO$_2$ uptake is the Meridional Overturning Circulation (MOC). The MOC transports warm surface waters with high C$_{ant}$ loads from low latitudes to the northern North Atlantic (Watson et al., 1995; Wallace et al., 2001), where the deep convection and entrainment by the overflows contribute to store this C$_{ant}$-laden water at depth. Eventually, these waters will return south in the lower limb of the MOC. Recent studies on the variability of the MOC point towards a possible decrease in its intensity during the second half of the twentieth century (Bryden et al., 2005). The causes for it are mainly attributed to the greenhouse-enhanced temperature rise and freshwater flux in high latitudes, where water mass formation processes abound. Based on multi-model simulations, an average MOC reduction of 25% (0–50%) by year 2100 under a SRES emission scenario A1B is very likely to occur (IPCC, 2007). The slowdown of MOC would bring forth profound consequences for global climate due to the associated decrease in heat transport (Drijfhout et al., 2006) and oceanic C$_{ant}$ uptake (Sarmiento and Le Quéré, 1996). However, regarding the oceanic sequestration of C$_{ant}$ it must be noted that the possibility of the MOC shutting down and its consequences are not free of ambiguity. Joos et al. (1999) have reported that the projected changes of the marine biological cycle compensate the reduction in downward mixing of C$_{ant}$, except when the North Atlantic thermohaline circulation collapses. Moreover, Duce et al. (2008) have argued that the predicted enhanced downward organic carbon fluxes in MOC shutdown scenarios, driven by anthropogenic nitrogen, could actually compensate for and even increase the oceanic uptake of C$_{ant}$. Several Ocean General Circulation Models (OGCMs) have suggested that the decadal variability of the
MOC is closely related with the variability of Labrador Sea-water (LSW) formation rates (Hátún et al., 2005; Latif et al., 2006; Böning et al., 2006). On the other hand, the long-term evolution of the MOC such as the possible weakening during the 21st century might be related to a decrease in the density of the Denmark Strait Overflow Water (DSOW) and the Iceland-Scotland Overflow Water (ISOW) (Cubasch et al., 2001; IPCC, 2007; Böning et al., 2006). These water masses meet in the Irminger Sea, where the Deep Western Boundary Current originates (Yashayaev et al., 2008).

The Irminger basin has been proposed as a LSW formation region (Pickart et al., 2003; Falina et al., 2008), in addition to the Labrador Sea. Independently of the formation region, two modes of LSW are typically defined: the classical LSW (cLSW, sometimes referred to as deep LSW) and the less dense upper LSW (uLSW) (Pickart et al., 1997). The LSW is formed in winter, when deep convection caused by intense air-sea heat loss results in the formation of homogeneous layers that can exceptionally reach depths of up to 2000 m (Kieke et al., 2006, hereinafter K’06). The ambient stratification and wind forcing intensity are determinant factors in this convective process (Dickson et al., 1996; Curry et al., 1998; Lazier et al., 2002). The convection activity in the Labrador Sea is related to the persistence and phase of the North Atlantic Oscillation (NAO) index. A positive NAO phase causes the intensification of winds and heat loss (surface cooling) in the Labrador Sea, fostering convection processes. During the early 1990’s, the strongly positive NAO index forced an impressive and exceptional convection activity down to more than 2000 m (Dickson et al., 1996; Lazier et al., 2002; Häkkinen et al., 2004; Y’08). This resulted in the formation of the thickest layer of cLSW observed in the past 60 years (Curry et al., 1998). This energetic convection period abruptly ended in 1996 with the shift of the NAO index to a negative phase. Nonetheless, weaker convection events (to less than 1000 m depth on average) continued to take place in the central Labrador Sea and formed the less dense uLSW. This water mass was first detected and described by Pickart et al. (1997) in the western Labrador Sea. Alternatively, the uLSW was spotted successively during the second half of the 1990’s (Azetsu-Scott et al., 2003, hereinafter AS’03; Stramma et al., 2004). Decadal time series of layer thicknesses of both LSW types corroborate that, far from exceptional, uLSW is an important product of the convection activity in the Labrador Sea (K’06). These time series show that the strong formation processes of cLSW in the early 1990’s are actually the exceptional events. The observations point to a slight chlorofluorocarbon-12 (CFC12) concentration decline (within the analytical uncertainty range, though) towards the end of the decade in the cLSW body (AS’03), following a strong CFC12 concentration increase that occurred in the early 1990s. This CFC12 decrease was also observed during the early 2000’s in the Labrador and Irminger Seas (Kieke et al., 2007, hereinafter K’07). The fluctuations of convection in the NASPG can modify the expected oceanic C_{ant} uptake rates in a likewise and parallel manner to CFCs.

In this study we have gathered hydrographical measurements and results from six cruises conducted in the Irminger Sea. The aim is twofold: a) study the evolution of C_{ant} concentrations in sub-surface waters, LSW, North East Atlantic Deep Water (NEADW) and DSOW in order to b) evaluate the variability of the oceanic storage rates of C_{ant} linked to the fluctuations of the convective processes in the NASPG, and the reduction of the formation of cLSW.
Table 1. Summary of cruises showing the analytical precision of the measurements for the main variables used in C_{ant} estimation. N stands for the number of NM means “Not Measured” and NA stands for “No Adjustment made”. In any case, units for C_T, A_T and oxygen (O) are in µmol kg⁻¹.

<table>
<thead>
<tr>
<th>Cruise</th>
<th>Date</th>
<th>PI</th>
<th>No. of Stations</th>
<th>No. of Samples</th>
<th>C_T</th>
<th>A_T</th>
<th>pH</th>
<th>O</th>
<th>C_T</th>
<th>A_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTO-NAS</td>
<td>23/07–14/08/1981</td>
<td>T. Takahashi</td>
<td>7</td>
<td>140</td>
<td>±3.5</td>
<td>±3.7</td>
<td>NM</td>
<td>±1.0</td>
<td>−3.0</td>
<td>−3.6</td>
</tr>
<tr>
<td>AR7E 91/1</td>
<td>08/04–02/05/1991</td>
<td>H. M. van Aken</td>
<td>10</td>
<td>216</td>
<td>±2.0</td>
<td>NM</td>
<td>NM</td>
<td>±0.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>FOURREX</td>
<td>07/08–17/09/1997</td>
<td>S. Bacon</td>
<td>17</td>
<td>327</td>
<td>±3.0</td>
<td>±2.0</td>
<td>±0.002</td>
<td>±1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>OVIDE 02</td>
<td>11/06–11/07/2002</td>
<td>H. Mercier</td>
<td>17</td>
<td>356</td>
<td>±3.0</td>
<td>±2.0</td>
<td>±0.002</td>
<td>±0.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>OVIDE 04</td>
<td>05/06–06/07/2004</td>
<td>T. Huck</td>
<td>17</td>
<td>395</td>
<td>±3.0</td>
<td>±2.0</td>
<td>±0.002</td>
<td>±0.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>OVIDE 06</td>
<td>24/05–26/06/2006</td>
<td>P. Lherminier</td>
<td>21</td>
<td>444</td>
<td>±3.0</td>
<td>±2.0</td>
<td>±0.002</td>
<td>±0.5</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

2 Dataset and method

Six cruises spanning through 25 years (1981–2006) of high-quality carbon measurements in the Irminger Sea area have been selected for this study. These are the TTO-NAS leg 4¹, AR7E 91/1², FOURREX/WOCE A25³ and the OVIDE 2002, 2004 and 2006 cruises (Fig. 1a, Table 1). The bottle and CTD data yielded very similar property profiles. Since bottle data includes all carbon-related analysis, only bottle data was used in this study. Unlike in the most recent cruises of FOURREX or throughout the OVIDE project, the TTO-NAS and AR7E 91/1 analytics did not include certified reference materials for their total inorganic carbon (C_T) measurements. For the TTO-NAS, Tanhua et al. (2005) performed a cross-over analysis with an overlapping more recent cruise. Based on a comparison with modern Certified Reference Material-referenced data, they suggest a correction for TTO-NAS C_T measurements of −3.0 µmol kg⁻¹, which has been applied to our dataset. In order to evaluate and interpret the variations of C_{ant} rates of storage we have focused on six water masses delimited by the density (σ_θ) intervals established following K’07 and Y’08, namely: from the upper 100 m to σ_θ = 27.68 kg m⁻³ we find the sub-surface layer; The uLSW is found between 27.68 < σ_θ < 27.76 kg m⁻³; cLSW between 27.76 < σ_θ < 27.81 kg m⁻³; North East Atlantic Deep Water (NEADW, which includes the ISOW contributions) is delimited by 27.81 < σ_θ < 27.88 kg m⁻³; and DSOW by σ_θ > 27.88 kg m⁻³ (Fig. 1b).

To estimate the anthropogenic CO₂ the ϕC_T² method from Vázquez-Rodríguez et al. (2008a) is applied (refer to Appendix A for details). It is a data-based, back-calculation method that constitutes an alternative version of the classical ΔC* approach (Gruber et al., 1996). The ϕC_T² method is not CFC-reliant and uses sub-surface layer (100–200 m) data from the whole Atlantic as the only reference to build the parameterizations needed. This sub-surface layer avoids the seasonal variability of surface properties, thus making the derived parameterizations more representative of water mass formation conditions. The method also takes into account the temporal variation of the CO₂ air-sea disequilibrium (ΔC_{dis}). The overall uncertainty of the method has been estimated in 5.2 µmol kg⁻¹ by means of random error propagation over the precision limits of the parameters involved in the calculation of C_{ant} (refer to Appendix A). Regarding the specific inventory estimates, errors were estimated using a perturbation procedure for each layer and the total water column. They were calculated by means of random propagation with depth of a 5.2 µmol kg⁻¹ standard error of the C_{ant} estimate over 100 perturbation iterations, and are given in Table 2. Assuming that the uncertainties attached to the C_{ant} estimation method are purely random and do not introduce biases, the final error included in Fig. 4 is calculated by propagating the individual errors associated to the samples. They reflect both measurement and parameterization errors.

3 Results

The fields of potential temperature (θ), salinity (S), apparent oxygen utilisation (AOU, the difference between the saturated and measured concentrations of oxygen) and C_{ant} in the Irminger Basin from 1981 to 2006 are shown in Fig. 2. The TTO-NAS section shows a strong vertical stratification at the LSW level between the first 1000 m and the relative salinity (θ) < 34.95), related to the low convection activity in the Labrador Sea in the late 1970's (K’06). This can derive from the fact that it takes two years for the LSW to spread into the Irminger Sea (Y’08). The temperature minimum (θ < 1.5°C) in the DSOW is also remarkable within the considered time-span. Compared to TTO-NAS, the AR7E (1991) cruise shows cooler LSW. The strong vertical homogenisation down to 1800 m in 1991 suggests local
LSW formation at the Irminger Sea (Pickart et al., 2003), which caused the saltier NEADW signal to shrink. The same year, the LSW layer also thickened substantially in the Labrador Sea (Fig. 12 in K’06). Since the AR7E cruise was carried out shortly after the winter season, the sub-surface layer thickness is seen to decrease substantially (Table 2). In 1997, the low salinity LSW invaded lower layers, beyond the 2000 m depth, while surface stratification slightly increased. The temperature of the cLSW reaches its minimum values for the period of observation, in agreement with Y’08, who observed that this minimum had been developing since at least one year earlier. The DSOW temperature signature (θ < 2°C) thinned considerably during the FOUREX cruise (1997), but recovered during the OVIDE cruises history, most importantly in 2004. It is likely that this variability is linked to that of the entrainment downhill of the sills. Alternatively, it must be noted that the FOUREX cruise intersects the DWBC to the south of the OVIDE line, and this may partially account for this difference. During this period of biennial sampling (2002, 2004 and 2006) an increase in salinity (especially at the LSW and NEADW layers) and stratification is observed, coinciding with a period of weak winter convection (K’06;
Fig. 2. Vertical profiles from bottle data of, potential temperature (\(\Theta\), in °C), Salinity, AOU (\(\mu\)mol kg\(^{-1}\)) and \(C_{ant}\) (\(\mu\)mol kg\(^{-1}\)) for the six cruises shown in Fig. 1a. Depth is indicated in the left-hand axis in dbar. The colour scale in each of the variables is the same for all years to facilitate comparison. It must be noticed that the eastern and western ends of the different sections are not necessarily identical. The red lines in the \(\Theta\) plots represent the same isopycnals shown in Fig. 1b, separating the main water masses in the Irminger basin. The thick light-grey dots in the \(\Theta\) plots represent the stations and bottle sampling spots. The data here plotted is the same used to compute \(C_{ant}\) storages and other results presented in this work.

Rhein et al., 2007; Y’08). The described thermohaline evolution concurs with the \(\Theta/S\) results shown by Y’08 for the LSW core: A salinity and temperature minimum is recorded in 1996 at the Irminger Sea (which is two years behind the \(\Theta/S\) minimum at the Labrador Sea). It is followed by a progressive salinization and warming due to lateral mixing that can be observed along the \(\sigma_1=36.93\) isopycnal and extends to the rest of LSW density range (Sarafanov et al., 2007; Y’08).

In 1981, there is a manifest stratification between the nearly oxygen-saturated sub-surface waters and the older NEADW that is clearly identified from the AOU profiles. The relative AOU minimum at the bottom of the western part in the Irminger Basin indicates the marked presence of DSW. The \(C_{ant}\) concentrations follow a similar pattern to AOU: high values, close to saturation (32 \(\mu\)mol kg\(^{-1}\)), near the surface and lower values (~45% of saturation) towards the bottom. During the first deep convection events in the Irminger Sea in the early 1990’s there was a significant and parallel increase in the \(C_{ant}\) and oxygen loads in the upper 1500 m. Nevertheless, the NEADW region shows higher AOU along with slightly lower (around 15%) \(C_{ant}\) values than in 1981, denoting that ventilation does not reach as deep down. The high ventilation of the water column caused by the strong deep convection between 1991 and 1997 (Lazier et al., 2002) resulted in smaller AOU and higher \(C_{ant}\) values during FOUREX than previously recorded for the LSW in the Irminger Basin. In 1997, the \(C_{ant}\) concentrations (30±0.7 \(\mu\)mol kg\(^{-1}\))≈80% saturated) at the LSW core is at a maximum and AOU at a minimum. The NEADW layer is richer in oxygen, less saline and it contains about 50% more \(C_{ant}\) than in 1991, suggesting that more intense mixing processes occurred with the upper bounding LSW layer. In the Charlie-Gibbs Fracture Zone (CGFZ) the LSW and NEADW normally flow in opposite direction according to general circulation schemes (Schott et al., 2004; Y’08), and mixing processes are enhanced. During 1997 the LSW transport in this area was particularly intense (Lherminier et al., 2007). During the OVIDE period, convection was weak in the Labrador Sea (K’06; Rhein et al., 2007) and no deep convection was recorded in the Irminger Sea (Y’08) resulting in a re-stratification of the water column and an aging of the deep-water masses. This is particularly evident in the cLSW, whose AOU increased by 10 \(\mu\)mol kg\(^{-1}\) on average from 1997 to 2006. Also, sub-surface (Fig. 1b) \(C_{ant}\) levels keep
rising in response to the atmospheric CO$_2$ increase. Conversely, weaker winds and buoyancy forcing associated with the low NAO index period during OVIDE provoked an increase in the stratification of the upper layers. This precluded local ventilation and translated into a dilution of C$_{ant}$ in the cLSW layer due to the permanently active isopycnal mixing. The C$_{ant}$ in the NEADW increases continuously suggesting incorporation of young water by entrainment downhill of the Iceland-Scotland sills. Finally, the DSOW flow (Olsson et al., 2005; Tanhua et al., 2008) appears more ventilated with respect to previous years and it also displays small C$_{ant}$ relative maxima. The observed increase of C$_{ant}$ in the NEADW and DSOW can derive from vigorous mixing processes, but it might also reflect the increase of the C$_{ant}$ content in the Arctic source waters.

The average values (from bottle data) and associated uncertainties in salinity, temperature, AOU, C$_{ant}$ and saturation concentration of C$_{ant}$ (C$_{satant}$) for each cruise and layer (Fig. 1) are summarised on Table 2 and Fig. 3. The average thickness of the layers and their percentage contribution to C$_{ant}$ specific inventories are also given in Table 2. The thickness was calculated as the average distance between layers weighed by the separation between stations. The averages for the rest of properties were computed integrating vertically and horizontally, and then dividing by the area of the corresponding layer. The C$_{satant}$ is estimated from the average temperature and salinity of the layer, assuming full equilibrium of surface waters with the average atmospheric molar fraction of CO$_2$ (xCO$_2$) at the year of each cruise. A quantitative evaluation of the previously described interdependences between the variability of AOU, C$_{ant}$ and ventilation has been attempted by plotting the percentage of C$_{satant}$ vs. AOU from Table 2 (Fig. 3d). The term %C$_{satant}$ is independent of the atmospheric CO$_2$ increase since it is referred to the C$_{satant}$ concentration in the corresponding sampling year. In this sense, %C$_{satant}$ is comparable to oxygen, whose atmospheric concentration is stationary. Hence, it is expected that recently equilibrated (young) waters will have low AOU and high %C$_{satant}$ values, while the opposite is expected in older waters that have undergone large remineralization of organic matter. We found that the largest temporal variability of AOU and %C$_{satant}$ is in the cLSW layer, where both variables are highly correlated ($R^2=0.94$). The uLSW shows also a significant %C$_{satant}$ vs. AOU correlation ($R^2=0.74$). When all Irminger Sea water masses in Table 2 (except for the DSOW, which represents only 5% of the water column volume) are considered altogether a correlation of $R^2=0.91$ is obtained (Fig. 3d). This suggests that in the Irminger Sea, %C$_{satant}$ for the sampling year could be estimated fairly accurately from AOU in the main water masses. Hence, for a given AOU value the %C$_{satant}$ would be invariable, independently from the sampling year. This AOU vs %C$_{satant}$ dependence establishes an empirical quantitative relationship based on a simplified mixing model with sub-surface waters and NEADW as end-members. The
former would represent the highly ventilated young waters from the winter mixed layer (WML) whereas the latter would stand for the older components. The deviations from this hypothetical mixing line can be due to lateral advection, to interannual or decadal variability of water mass formation or to differential biological activity rates.

The temporal evolution of the average C_{ant} in each of the five layers is plotted in Fig. 4. The C_{ant} estimation approach used is the φC$_P^T$ method (Appendix A). The sub-surface layer (Fig. 1b) increases its C_{ant} steadily and sustains its high $\%C_{\text{ant}}$ (>86%) while trying to catch up with the rising atmospheric CO$_2$ concentrations. The uLSW trend from 1981 to 1991 follows its upper bound sub-surface layer, keeping up with the atmospheric CO$_2$ increase and maintaining its $\%C_{\text{ant}}$. The maximum thinning of the uLSW layer from 1981 to 1997 (Table 2) coincides with the end of the maximum convection period in the Irminger Sea (K’06). The cLSW almost doubled its thickness and average C_{ant} content during this period of time (Table 2 and Fig. 3d) at a rate even superior to the atmospheric one. All of it derives from the increased convection processes that occurred in the NASPG between 1991 and 1997 (K’06). The noteworthy decrease in C_{ant} and layer thickness during the OVIDE cruises caused by the hindered ventilation entails the increase in the AOU levels due to isopycnal mixing. In the NEADW layer, C_{ant} shows a large increment from 1991 to 1997 parallel to the salinity and AOU drop. This suggests the possibility of important diapycnal mixing with the upper re-ventilated cLSW. The DSOW layer will represent a very small contribution (2–3%, Table 2) to C_{ant} storage in the Irminger basin given its small thickness. It shows an analogous behaviour to NEADW, i.e., there is an increase in average C_{ant} from 1991 to 1997, matched with a drop in AOU caused by the incorporation of young water by entrainment downhill of the Iceland-Scotland sills.

Regarding the temporal evolution of the C_{ant} storage rate, a global increase at different paces is observed. From 1981 to 2006 the average rate of increase in the specific C_{ant} inventory for the Irminger Sea has been 1.1±0.1 mol C m$^{-2}$ yr$^{-1}$. During the early 1990’s, this rate was more than twice the mean (2.3±0.6 mol C m$^{-2}$ yr$^{-1}$). Compared with this period of exacerbated C_{ant} storage rate in the Irminger Sea, the average storage rate during the following decade (1997–2006) underwent an important fall (Fig. 4) that was estimated in −1.6±0.4 mol C m$^{-2}$ yr$^{-1}$. The average C_{ant} storage rate of 0.75±0.16 mol C m$^{-2}$ yr$^{-1}$ during the FOUREX-OVIDE period was found to be significantly different from that of the early 1990’s (p-value<0.05). Based on the rapid water mass renewal in the Irminger compared to the C_{ant} rate of increase in the ocean, it can be reasonably assumed that the C_{ant} concentrations in the different layers found in the studied section can be extrapolated to the whole Irminger basin. Therefore, the above data was extrapolated to cover the Irminger basin (0.58×106 km2, taking the FOUREX section and the Denmark Strait as the southern and northern boundaries, respec-

![Temporal evolution (1981–2006) of the average Cant (µmol kg$^{-1}$) stored in the subsurface layer (dark grey line), uLSW (orange line), cLSW (black line), NEADW (yellow line) and DSOW (blue line). The continuous grey line shows the 100% C$_T$ saturation of water masses in equilibrium with the atmosphere over time, following the atmospheric CO$_2$ increase.](image-url)

4 Discussion

As Doney and Jenkins (1988) pointed out, ocean regions affected by strong convection processes tend to acquire large air-sea disequilibria. This applies not only to CO$_2$ but also to atmospheric gases with higher air-sea transfer velocities such as oxygen or CFCs. The same processes affecting oceanic C_{ant} uptake will be determining the distribution and uptake rates of CFCs. Several works have focused on the CFCs in the NASPG after the 1970’s (AS’03; K’07; Rhein et al., 2007), and the patterns they described support the C_{ant} trends obtained in the present study. The above cited works describe how the specific inventories of CFC12 in the core of the cLSW in both the Labrador and Irminger Seas grew until approximately the first half of the 1990’s. As Lazier et al. (2002) have illustrated, the formation of cLSW ceased after 1997. The supply shortage of low-salinity/CFC-rich surface waters led to an annual increase in cLSW salinities and a decrease in CFCs because of isopycnal mixing. The CFC12 inventories started to decline strongly from 1997 to 1999 and kept decreasing at a slower rate until 2003 (AS’03; K’07). These evidences seem to correspond with the same pattern here observed for the average C_{ant} in the cLSW.
which decreases from 1997 to 2002 (Fig. 4). According to AS’03, the marked increase in CFC12 concentrations prior to 1995 in the uLSW core reduced to almost standoff from that point until 2000. This result is also in good agreement with the patterns of average C_{ant} obtained for the same years and region in this study (Fig. 4). K’07 have pointed that this significant increase in CFC12 inventories in the uLSW for the NASPG best describes the situation in the Labrador Sea, rather than in the Irminger, where the CFC12 inventory has a more subtle increase during that period. In spite of this remark, our C_{ant} results for the uLSW follow the expected trend, within the associated error margins. With respect to the NEADW and DSOW, AS’03 have shown that, from 1991 to 2000, the CFC12 concentration in the Labrador Sea increased up to 80% in both the NEADW and DSOW layers. Whilst this happened at a steady rate in the case of NEADW, the interannual variability was larger for DSOW. Over the same period, the C_{ant} storages here obtained increased by 50% and 40% in the NEADW and DSOW layers, respectively. There are a few differences in the environmental behavior of CFCs and CO$_2$ that may account for the dissimilarities in magnitude of their inventories. The former is not affected by the Revelle factor, it has a greater solubility in cold waters and its atmospheric rate of increase is different to that of CO$_2$.

Although the NASPG has a net gain of C_{ant} by horizontal advection (Mikaloff-Fletcher et al., 2006; Alvarez et al., 2003, hereafter A’03), estimating how much it is stored and how much of that comes from direct exchange with the atmosphere entails certain difficulty. An indirect estimate of the air-sea C_{ant} fluxes can be obtained by combining C_{ant} storage results with horizontal transports into carbon budget balances from closed box studies (as in A’03 and Mikaloff-Fletcher et al., 2006). The C_{ant} storage rate for the Irminger Sea was first estimated by A’03 in 1.5±0.3 mol C m$^{-2}$ yr$^{-1}$. For that calculation they assumed a fixed C_{ant} rate of increase of 0.85 µmol kg$^{-1}$ yr$^{-1}$ and estimated also the mean penetration depth (MPD, as in Broecker et al., 1979) using data from the WOCE A20 and FOUREX cruises for the 1990–1997 time period. Assuming a transient steady state (TSS, Keeling and Bolin, 1967) for C_{ant}, the MPD is defined as the quotient between the specific inventory of C_{ant} in the water column and the C_{ant} concentration in the mixed layer ($C_{\text{ant}}^{\text{ml}}$). The model results presented in Tanhua et al. (2006) demonstrate that the TSS assumption is indeed valid for C_{ant} in this part of the North Atlantic Ocean. A high MPD normally indicates that large amounts of C_{ant} have penetrated in the water column following strong vertical convection processes (>1000 m depth) generated in the considered region, and vice versa. A’03 calculated an average and constant MPD for the Irminger basin of 1739±381 m by approximating $C_{\text{ant}}^{\text{ml}}$≈$C_{\text{ant}}$ in the corresponding sampling years. The average C_{ant} storage rate for the 1981–2006 period in the Irminger Sea here obtained is 1.1±0.1 mol C m$^{-2}$ yr$^{-1}$. The calculated average MPD for the considered years is 1715±63 m. This is quite in agreement with A’03, although the MPD values are seen to vary, especially in the strong convection periods such as from 1991–1997. Also, Tanhua et al. (2006) using an OGCM have shown that deviations from the TSS behaviour are possible in the SPNA due to the variability in deep water formation. Specifically, the MPD in the Irminger basin for the years 1981, 1997, 2002, 2004 and 2006 are, respectively: 1835±140, 1657±88, 1808±72, 1678±56, 1679±54 and 1632±42 m. The 1.5±0.3 mol C m$^{-2}$ yr$^{-1}$ estimate from A’03 is larger than the average 1.1±0.1 mol C m$^{-2}$ yr$^{-1}$ here obtained and, anyhow, lower than the estimated rate, between 1991 and 1997, of 2.3±0.6 mol C m$^{-2}$ yr$^{-1}$. Some factors accounting for the temporal variability of C_{ant} storage rates may explain some of these discrepancies, primarily: a) The time variability of the MPD can affect notoriously the C_{ant} storage rates, especially between 1991 and 1997 (8% larger than the average). There can exist exceptional interannual stages where the storage rates can amount up to twice (1991–1997) or almost half (1997–2006) the long-term average; b) The C_{ant} rate of increase must consider the dependence of the C_{ant} with temperature, which is intimately connected with the Revelle factor (it describes how the pCO$_2$ in seawater changes for a given change in C$_T$, and vice versa). The capacity for ocean waters to take up C_{ant} is inversely proportional to the Revelle factor, which depends on temperature. The C_{ant} rates of storage can change ~2% per °C.

Our observations in the Irminger Sea can also be compared with other works on the secular variation of sea surface pCO$_2$ that cover larger areas. In the NASPG, Lefèvre et al. (2004) reported a mean increase of 1.8 µatm yr$^{-1}$ between 1982 and 1998. This corresponds to a ΔC_T=0.77 µmol kg$^{-1}$ per annum for an average sea surface temperature of 5°C in the Irminger Sea. If an average MPD of 1715 m is considered for this region and time period, the above ΔC$_T$ translates into a C_{ant} storage rate that increases by 1.35 mol C m$^{-2}$ yr$^{-1}$. This is very close to the 1.22±0.03 mol C m$^{-2}$ yr$^{-1}$ estimated here from Fig. 4 for the 1981–1997 period. From sea surface pCO$_2$ measurements Schuster and Watson (2007) showed that the sink of atmospheric CO$_2$ in the whole North Atlantic was subject to important interannual variability. They estimated an annual decrease of the North Atlantic uptake of −1.1 mol C m$^{-2}$ yr$^{-1}$ between 1997 and the mid-2000’s. They argued that the main causes for this change were the declining rates of wintertime mixing and ventilation between surface and subsurface waters due to increasing stratification. In the present work we have estimated this same rate of decrease to be −1.6±0.4 mol C m$^{-2}$ yr$^{-1}$ for the 1997–2006 decade in the Irminger Sea. Corbière et al. (2007) estimated an annual increase in wintertime sea surface pCO$_2$ of 3.0 µatm yr$^{-1}$ between 1993 and 2003 utilizing data from a shipping route from Iceland to Newfoundland. They attributed this finding principally to the increasing sea surface temperatures linked with the shift of the NAO index into a negative phase after
this corresponds to an annual decrease of the C_{ant} storage of
$-1.6 \, \text{mol} \, \text{C} \, \text{m}^{-2} \, \text{yr}^{-1}$, which is in excellent agreement with our
estimates.

In summary, the general decline of the NASPG C_{ant} sink is
supported by the data here obtained and it is corroborated by
other results like those from Schuster and Watson (2007) or
Corbi`ere et al. (2007). There is a documented variability of
the Labrador Sea deep convection that reached its maximum
activity during the early to mid 1990s, correlated with posi-
tive NAO phases. The maximum C_{ant} storage rate occurred
during this maximum convection period. The observed con-
vection decrease since 1997 in the NASPG is mainly tied
to the enhanced stratification and the consequent reduced
heat loss in the northern North Atlantic (Lazier et al., 2002;
AS’03; K’07). All these fluctuations are embodied in the
NAO index variability. The above factors have a direct influ-
ence on the physical pump of CO_2 and add to the changes in
the buffer capacity of surface waters to aggravate the capac-
ity of the North Atlantic as a CO_2 sink.

Appendix A

The φC_{γ} method (Vázquez-Rodríguez et al., 2008a) is a
process-oriented biogeochemical approach to estimate C_{ant}.
It is an alternative to existing process-based C_{ant} estimation
methods such as the ΔC^* (GSS’96) or TrOCA (Touratier et
al., 2007). The distinctive characteristics of the φC_{γ} method are:

1. The sub-surface layer (100–200 m) is taken as a ref-
ence for characterising the properties of the water
masses at their respective formation times. The variabil-
ity of the conservative properties of greatest importance in
C_{ant} estimation (θ, S, NO, PO) is at least one order
of magnitude smaller than in the surface layer. In addi-
tion, the thermohaline variability of the surface layer en-
closes and represents all water masses outcropped in the
Atlantic Ocean. The use of data from the sub-surface
layer reduces the sparseness of data available for param-
eterizations given the high amount of data for sub-
surface waters at any season compared to the scarce sur-
facing winter data.

2. The air-sea disequilibrium (ΔC_{dis}) is parameterized at
the sub-surface layer first using a short-cut method to
estimate C_{ant}. Since the average age of the water masses
in the 100–200 m depth domain, and most importantly
in outcropping regions, is under 25 years, the use of the
short-cut method to estimate C_{ant} is appropriate (Matear
et al., 2003).

3. The A_{γ} and ΔC_{dis} parameterizations (in terms of con-
servative tracers) obtained from sub-surface data are ap-
plied directly to calculate C_{ant} in the water column for
waters above the 5°C isotherm and via an OMP ap-
proach (like in GSS’96) for waters with $\theta<5$°C. This
approach especially improves the estimates in cold deep
waters that are subject to strong and complex mixing
processes and represent an enormous volume of the
global ocean ($\sim86\%$). One important aspect in this pro-
cess is that, unlike for the ΔC^* method, CFC data are
not necessary to make C_{ant} predictions, since none of
the A_{γ} or ΔC_{dis} parameterizations are CFC-reliant.

Following the work from Matsumoto and Gruber (2005), the
φC_{γ} method proposes an approximation to the hori-
ontal (spatial) and vertical (temporal) variability of ΔC_{dis}
($\Delta \Delta C_{\text{dis}}$) in the Atlantic Ocean in terms of C_{ant} and ΔC_{dis}
itself. Also, the decrease of preindustrial A_{γ} due to CaCO$_3$
dissolution changes projected from models (Heinze, 2004)
and the effect of rising sea surface temperatures on the pa-
rameterized A_{γ} were corrected from models (Schuster and Watson,
2007) and in reasonable agree-
mence on the physical pump of CO_2 and add to the changes in
the buffer capacity of surface waters to aggravate the capac-
ity of the North Atlantic as a CO_2 sink.

www.biogeosciences.net/5/1669/2008/

Biogeosciences, 5, 1669–1679, 2008
for φC_{φ}^2 and TrOCA, respectively). In the low NAO phase (1997–2006), the rates of change are seen to decrease in both cases: 0.75±0.16 mol C m$^{-2}$ yr$^{-1}$ according to φC_{φ}^2 and 0.5±0.4 mol C m$^{-2}$ yr$^{-1}$ according to the TrOCA approach.

Acknowledgements. This work was developed and funded by the VODE research project from the French research institutions IFREMER and CNRS/INSU and by the European Commission within the 6th Framework Programme (EU FP6 CARBOOCEAN Integrated Project, Contract no. 511176). We would like to extend our gratitude to two anonymous reviewers for their constructive and careful comments. Marcos Vázquez-Rodríguez is funded by Consejo Superior de Investigaciones Científicas (CSIC) I3P predoctoral grant program REF: I3P-BPD2005.

Edited by: F. Joos

References

