Abstract. This model study addresses the change in pelagic calcium carbonate production (CaCO$_3$, as calcite in the model) and dissolution in response to rising atmospheric CO$_2$. The parameterization of CaCO$_3$ production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in *Emiliania huxleyi* as a function of pCO$_2$. The model predicts values of CaCO$_3$ production and dissolution in line with recent estimates. The effect of rising pCO$_2$ on CaCO$_3$ production and dissolution was quantified by means of model simulations forced with atmospheric CO$_2$ emission rates known as acidification (e.g. Caldeira and Wickett, 2003; Feely et al., 2004; Orr et al., 2005) decreases the saturation state of seawater with respect to calcium carbonate (CaCO$_3$). The saturation state is defined as the ratio of the in situ ion concentration product [Ca$^{2+}$]\times[CO$_3^{2-}$] over the stoichiometric solubility product Ksp (Mucci, 1983):

$$\Omega = \frac{[Ca^{2+}] \times [CO_3^{2-}]}{Ksp}$$ (1)

In the modern ocean, abiotic CaCO$_3$ precipitation is only a minor contribution to total carbonate production. The majority of CaCO$_3$ is produced by organisms: e.g. coralline algae (high-Mg calcite), pteropods and corals (aragonite), bivalves (calcite, aragonite, mixed calcite and aragonite), coccolithophores (calcite), foraminifera (mostly calcite, but also aragonite). The solubility decreases from high-Mg calcite, and aragonite to calcite suggesting differing degrees of vulnerability of organisms to ocean acidification. While the exact reaction pathway of biocalcification awaits further elucidation for most calcifiers, it has been shown to strongly depend on the level of supersaturation. In general, calcification decreases with decreasing saturation state (refer to Kleypas et al. (2006) for a comprehensive synthesis of existing data). While calcification appears to be linearly related to the saturation state in corals, experimental results obtained for foraminifera and coccolithophores suggest the existence of a threshold value of saturation state below which the calcification will decrease drastically (e.g. Gattuso et al., 1998; Bijma et al., 1999; Kleypas et al., 1999; Riebesell et al., 2000; Zondervan et al., 2001; Zondervan et al., 2002). Unmitigated acidification of oceanic waters will ultimately threaten the existence of marine calcifiers and cause major changes in marine ecosystems.

In terms of feedback on rising atmospheric CO$_2$, three distinct yet interconnected groups of processes involving CaCO$_3$ can be identified:
1. Calcification: CaCO$_3$ precipitation leads to a pCO$_2$ increase according to Eq. (2):

\[
\text{Ca}^{2+} + 2\text{HCO}_3^- \leftrightarrow \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \tag{2}
\]

A decrease in calcification would thus favor the uptake of atmospheric CO$_2$ by the ocean and acts as a negative feedback on rising atmospheric pCO$_2$. A potential decrease of surface ocean pCO$_2$ of 10 to 20 µatm was estimated for a complete shutdown of surface ocean calcification (Gruber et al., 2004). The ratio of CO$_2$ released per mole of CaCO$_3$ precipitated is a function of the buffer capacity of the seawater acid-base CO$_2$ system. Under present conditions, roughly 0.6 moles of CO$_2$ are released per mole of CaCO$_3$ precipitated (Frankignoulle et al., 1994). This ratio will increase as the overall buffer capacity of seawater decreases in response to anthropogenic CO$_2$ uptake (Zeebe and Wolf-Gladrow, 2001), thereby counteracting the effect of decreasing calcification.

2. Dissolution: The effect of dissolution follows directly from the stoichiometry of Eq. (2) (backward reaction). Enhanced dissolution of CaCO$_3$ in response to acidification increases ocean alkalinity thereby favoring CO$_2$ uptake, which can be considered as a negative feedback on atmospheric pCO$_2$.

3. CaCO$_3$ export and rain ratio effect: A decrease in calcification will alter the ratio of organic C to inorganic C (the rain ratio): an increase in rain ratio will promote the dissolution of CaCO$_3$ in marine sediments resulting in a higher alkalinity (Archer and Maier-Reimer, 1994), a negative feedback operating on timescales of 10,000 years. Alternatively, if the ratio of organic C to inorganic C is closely bound by the process of ballasting (Ittekott, 1993; Armstrong et al., 2002; Klaas and Archer, 2002), less CaCO$_3$ production would imply less ballasting of organic C (POC) fluxes and a shallower remineralization of POC which corresponds to a positive feedback on atmospheric CO$_2$.

The interplay between these processes makes it difficult to have an a priori knowledge of the amplitude and sign of the feedback associated with changes in the carbonate chemistry of seawater and calcification/dissolution/ballasting in response to ocean acidification. The present model study focuses on the response of calcification (1) and CaCO$_3$ dissolution (2) to rising pCO$_2$, but not on the rain ratio effect (3). The aim is, on one hand, to quantify the calcification/dissolution feedback on rising atmospheric CO$_2$, on the other, to assess the relative importance of the two individual processes.

2 Model description

2.1 The biogeochemical model PISCES: a brief general description

The biogeochemical model PISCES (Aumont et al., 2003; Aumont and Bopp, 2006; Gehlen et al., 2006) simulates the biogeochemical cycle of oxygen, carbon and of the main nutrients controlling marine phytoplankton growth: nitrate and ammonium, phosphate, silicate and iron. The nutrient concentration is linked through a constant Redfield ratio and phytoplankton growth is limited by the external availability of nutrients. The cycles of carbon and nitrogen are decoupled in the model to a certain degree by nitrogen fixation and denitrification. The model distinguishes two phytoplankton size-classes corresponding to nanophytoplankton and diatoms, and two zooplankton size classes which are microzooplankton and mesozooplankton. For all species, the C/N/P ratios are assumed constant. The prognostic variables of phytoplankton are total biomass, iron, chlorophyll and silicon contents. The internal ratios of Fe/C, Chl/C and Si/C of phytoplankton are predicted by the model. For zooplankton, the total biomass is the only prognostic variable. The bacterial pool is not modeled explicitly. The model distinguishes three non-living compartments for organic carbon: semi-labile dissolved organic carbon (DOC) with timescales of several weeks to several years, two size classes of particulate organic carbon (small particles = POCs and big particles = POCb). While the C/N/P composition of dissolved and particulate matter is tied to Redfield stoichiometry, the iron, silicon and carbonate contents of the particles are diagnosed.

The two particulate detrital pools (POCs and POCb) are fueled by mortality, aggregation from nanophytoplankton and diatoms, fecal pellet production and grazing. Mineralization of particulate organic carbon together with excretion contributes to the semi-labile pool of dissolved organic carbon. Differential settling and turbulence promote particle aggregation. The parameterization of aggregation is based on Jackson (1990) and Kriest and Evans (1999, 2000). Small particles sink with a constant sinking speed of 3 m/d. Large particles, as well as CaCO$_3$ and SiO$_2$ sink with a sinking speed increasing with depth from 50 m/d at the base of the mixed layer to 200 m/d at 2000 m, respectively 425 m/d at 5000 m depth.

A detailed description of PISCES, including model equations and parameters is available as supplementary material in Aumont and Bopp (2006). We present hereafter a description of CaCO$_3$ production and dissolution. These parameterizations were adapted for the scope of the present study.

2.2 Biogeochemical cycle of carbonate in PISCES

PISCES simulates dissolved inorganic carbon and total alkalinity (carbonate alkalinity + borate + water). The carbon chemistry is computed following the OCMIP protocols (http://www.ipsl.jussieu.fr/OCMIP).

2.2.1 Carbonate production

Several phyla contribute to pelagic CaCO$_3$ production. Together with calcite producing coccolithophores and foraminifera, aragonite secreting pteropods make up for the
The effect of increasing atmospheric pCO$_2$ was used in a large number of studies addressing the calcification of marine calcifiers. The partition between coccolithophores and foraminifera is poorly constrained. According to Schiebel (2002), the latter may contribute up to 23–56% of the CaCO$_3$ flux at 100 m (Schiebel et al., 2002). While experimental studies with representatives of all three groups of calcifiers gave evidence for a calcification response to changes in the carbonate system, the majority of data were collected for coccolithophores (Kleypas et al., 2006). Facing the scarcity of experimental data and in order to allow a first assessment of the calcification/dissolution feedback on rising atmospheric CO$_2$, we decided to attribute pelagic calcification to calcite secreting coccolithophores. Our approach is extended to aragonite producing pteropods in a follow-up study by Gangstø et al. (20071).

Marine calcifiers are not implemented as a distinct plankton functional group in PISCES. In the model standard version, carbonate production is assigned to nanophytoplankton, the size class of coccolithophores, as a function of temperature and nutrient levels. Parameter values controlling CaCO$_3$ production were chosen such as to reproduce the general distribution patterns of coccolithophores (Moore et al., 2002; Aumont and Bopp, 2006). For the purpose of this study, the standard parameterization of CaCO$_3$ formation was updated to account for the saturation state of ambient waters with respect to calcite based on a synthesis of experimental studies.

The bloom-forming cosmopolitan species *Emiliania huxleyi* was used in a large number of studies addressing the effect of increasing atmospheric pCO$_2$ on the production of calcite and the particulate inorganic carbon (PIC) to particulate organic carbon (POC) ratio. Experimental studies encompass laboratory experiments with monospecific cultures of *E. huxleyi* (Riebesell et al., 2000; Sciandra et al., 2003; Zondervan et al., 2001, 2002) and results from a mesocosm experiment with a natural phytoplankton population dominated by this calcifying species (Delille et al., 2005). All studies document a decrease in calcification with increasing pCO$_2$. The response in terms of the PIC to POC ratio is more differentiated and depends on light and nutrient conditions. Under N-limited growth conditions, Sciandra et al. (2003) reported constant PIC to POC ratios for *E. huxleyi* cultures grown under elevated pCO$_2$. The constant PIC to POC ratio results from the concomitant decrease in inorganic carbon and organic carbon production. In contrast, experiments with nutrient replete *E. huxleyi* cultures (Riebesell et al., 2000; Zondervan et al., 2001, 2002) yielded a decrease in PIC/POC with increasing pCO$_2$ resulting from the combined effect of a decrease in inorganic carbon production and an increase in organic carbon synthesis. The same response was found during a mesocosm experiment with a natural phytoplankton population dominated by blooming *E. huxleyi* (Delille et al., 2005).

We included only experimental data from N-replete experiments for the purpose of this model study (Delille et al., 2005; Riebesell et al., 2000; Zondervan et al., 2001, 2002). The saturation state of seawater with respect to calcite was computed from measured total alkalinity and pCO$_2$ using the CO2SYS Package (Lewis and Wallace, 1998) and carbonic acid dissociation constants by Mehrbach et al. (1973). Experimental PIC to POC ratios are plotted as a function of saturation of seawater with respect to calcite (Ω_c) in Fig. 1. All experiments document a qualitatively similar response to a decrease in saturation state Ω_c (Fig. 1). The scatter in the data reflects differences in experimental conditions (e.g. nutrient availability and light conditions). Due to the limited number of observations, all data were used to derive the parameterization describing the carbonate production as a function of Ω_c. Since the biocalcification underlies physiological controls, a Michaelis-Menten kinetic was selected for the dependency of the carbonate production – expressed as the ratio of PIC to POC – to the saturation state:

$$\frac{\text{PIC}}{\text{POC}} = \left(\frac{\text{PIC}}{\text{POC}} \right)_{\text{max}} \times \frac{(\Omega_c - 1)}{K_{\text{max}} + (\Omega_c - 1)} \quad (3)$$

where: PIC/POC = ratio of inorganic to organic carbon; PIC/POC_{max} = 0.8, maximum ratio observed under optimal growing conditions; K_{max} = 0.4, with analogy to the half saturation constant, value of (Ω_c - 1) for which PIC/POC equals half of its maximal value.

The ratio PIC/POC max was chosen to equal 0.8. While in monospecific cultures values up to 1 might be encountered, the ratio PIC to POC in natural phytoplankton population does not exceed 0.8 even when coccolithophores are blooming (see Fig. 1 and corresponding references). The value of K_{max} of 0.4 reflects the observation that for some marine calcifiers calcification decreases rapidly below a threshold value of Ω = 4.0 (Gattuso et al., 1998).

Following the new parameterization, the model computes carbonate production as a function of environmental parameters (temperature, nutrient limitation and saturation state). We refer to this production as the gross CaCO_3 production. The pool of sinking carbonate particles is fueled by mortality and grazing on calcifying nanophytoplankton. Half of the grazed shells are routed to the sinking flux of CaCO_3, the other half is assumed to dissolve in the guts of grazers. The resulting carbonate flux corresponds to the net CaCO_3 production. This description was adopted in order to account for the observed, yet largely unexplained, loss of carbonate production in the upper ocean (Milliman et al., 1999).

2.2.2 Carbonate dissolution

The dissolution of CaCO_3 has been extensively studied over the past decades (e.g. Morse and Berner, 1972; Ingle et al., 1973; Berner and Morse, 1974; Berner, 1976; Morse, 1978; Honjo and Erez, 1978; Plummer et al., 1978; Keir, 1980; Walter and Morse, 1985; Chou et al., 1989; Arakaki and Mucci, 1995; Morse and Arvidson, 2002; Gehlen et al., 2005a, b). It is in general described by a higher order dependence of the dissolution reaction on the degree of undersaturation of seawater:

\[R_{\text{DISS}} = k \times (1 - \Omega_c)^n \]

where: k, dissolution rate parameter, 1/time.

Keir (1980) derived a reaction rate order of 4.5 from laboratory dissolution experiments with synthetic calcite. The higher order dependence was challenged by Hales and Emerson (1997a). The authors re-evaluated Keir's (1980) experimental data and concluded that the rate of dissolution is linearly dependent on undersaturation (n = 1). According to Hales and Emerson (1997a), the high reaction order derived by Keir (1980) could be attributed to uncertainties in the saturation state of the experimental seawater. Moreover, first-order calcite dissolution kinetics proved to be more consistent with the interpretation of in-situ pore water pH measurements (Hales and Emerson, 1997a, b). As stressed by Gehlen et al. (1999), a satisfying reproduction of pore water profiles through diffusion-reaction models is, however, not a proof per se of the validity of a kinetic expression.

Gehlen et al. (2005b) carried out kinetic experiments with biogenic CaCO_3. They derived an average reaction rate order of n = 2.3 ± 0.4 from 8 experiments with biogenic CaCO_3 in artificial seawater. The higher reaction order is explained in terms of a multiphase system. It results from the concomitant dissolution of carbonate fractions characterized by variable reaction rate constants.

While the in-depth discussion of CaCO_3 dissolution kinetics is out of the scope of our paper, the preceding section highlights the need for further experimental studies of the dissolution behavior of biogenic CaCO_3 phases. For the focus of this modeling study, we adopted a linear dependency of CaCO_3 dissolution on undersaturation (n = 1). Since the extrapolation of experimental results from controlled laboratory experiments which express reaction rate constants normalized to the specific surface area of CaCO_3 (e.g. Keir, 1980; Gehlen et al., 2005b) to the global scale is not straightforward, we used the evolution with depth of CaCO_3 fluxes recorded in sediment traps to derive the apparent reaction rate constant \(k^* \) (1/time).

We selected stations for which mean annual fluxes were reported from at least two different deployment depths from a comprehensive data set on particle fluxes (Dittert et al., 2005). This was the case at 11 stations. In order to derive dissolution rates from CaCO_3 fluxes, the time it takes for settling particles to bridge the depth interval between trap deployments needs to be known. This calls for the knowledge of particle sinking speed. The particle sinking speed at depth of trap deployment was obtained from the model parameterization of sinking speed of large particles:

\[w = w_{\text{min}} + (w_{\text{max}} - w_{\text{min}}) \times \max \left(0, \frac{z - z_m}{200} \right). \]

where: \(w_{\text{min}} \), minimum sinking speed of 50 m/d; \(w_{\text{max}} \), sinking speed at 2000 m below the mixed layer of 200 m/d; z, depth; \(z_m \), depth of mixed layer.

Knowing the sinking speed, allows deriving the concentration of CaCO_3 from flux observations. The fraction of CaCO_3 lost to dissolution was calculated as the difference in CaCO_3 concentrations between the respective upper and lower traps. The saturation state of seawater with respect to calcite (\(\Omega_c \)) was determined from GLODAP data (Key et al., 2004) at the location of the lower trap. At two of the stations even the lower traps were in waters oversaturated with respect to calcite. The slight decrease in CaCO_3 fluxes observed in the data suggests either the presence of a more soluble carbonate phase (e.g. aragonite) or shallow dissolution of calcite driven by the interaction between particles and biota (e.g. grazing and dissolution during gut passage or dissolution in acidic microenvironments, see Milliman et al. (1999) for references). Rearranging the model equation for calcite dissolution:

\[R_c = [\text{CaCO}_3] \times k^* \times (1 - \Omega_c) \]

yields \(k^* = \frac{R_c}{[\text{CaCO}_3] \times (1 - \Omega_c)} \).
Terms $[\text{CaCO}_3]$ and R_c correspond to the concentration of calcite particles in mol/l, respectively to the bulk dissolution rate in mol/l per unit time. The latter is calculated from the difference in concentrations and the time necessary for settling particles to bridge the depth interval between successive trap deployments.

In a first step k^* was determined for each sediment trap array. This resulted in k^* estimates ranging from 0 to 479.2 d$^{-1}$ with an average value of 93.6 d$^{-1}$ and a median of 12.1 d$^{-1}$. This wide spread and also the large difference between average and median values suggested a further refinement of the determination of k^*. This fit was done by systematically varying k^* to predict for each sediment trap array the upper CaCO$_3$ concentration from the concentration at the respective lower trap. By systematically varying k^*, the rms-error for the predicted and measured CaCO$_3$ concentrations in the upper traps converged to a minimum value for k^*=10.9 d$^{-1}$, which was then implemented into the PISCES model.

Possible drawbacks of this approach are that only data from a few stations (11) were available and for two of them calcite dissolution was theoretically impossible due to calcite oversaturation at the lower trap level. This might bias the k^* value towards low estimates, however, these traps contained among the lowest CaCO$_3$ concentrations and thus contributed relatively little error to the optimization of k^* by the rms. Furthermore, the gradient of CaCO$_3$ saturation between the two trap depths was not taken into account, only the degree of saturation at the lower trap level, as at all stations except for one the water surrounding the upper traps was still oversaturated with respect to calcite. This assumption may also bias k^* estimates towards lower values. Fitting k^* by minimization of the rms-error for predictions of the upper trap fluxes may lead to a high weight for traps with high CaCO$_3$ fluxes, as here the misfit between predicted and measured values may have a strong impact on the rms. However, this was obviously not the case as for example the two traps with highest CaCO$_3$ concentrations also had the highest individual k^*-value, but the resulting value for k^* is still relatively low and close to the median.

The flux of CaCO$_3$ reaching the last model box (= lower boundary) is re-dissolved instantaneously after removing the alkalinity equivalent corresponding to river input. The model is strictly mass conserving.

3 Methodology

The 3-D global ocean general circulation model OPA (Madec et al., 1998) provided the physical forcing fields for tracer transport. After 3000 years of integration in an off-line mode at constant pCO$_2$ of 278 ppm, modeled nutrient and chlorophyll fields have reached a quasi steady-state with yearly mean distributions and seasonal variations similar to observations (Aumont and Bopp, 2006). The new parameterizations of carbonate production and dissolution were implemented into the PISCES standard version and the model was run for another 400 years. This allowed for a reorganization of dissolved inorganic carbon (DIC) and alkalinity (ALK) fields down to 1000 m in response to the modified descriptions of calcification and dissolution. In order to evaluate the potential impact of atmospheric pCO$_2$ increase on pelagic calcification and CaCO$_3$ dissolution, 3 model experiments were then performed according to the standard CMIP scenario (Coupled Model Intercomparison Progrect, http://www-pcmdi.llnl.gov/projects/cmp/index.php) of atmospheric pCO$_2$ increasing at a rate of 1% per year from 286 to 1144 ppm over a 140 year time-period. Assuming that under constant climate the land biosphere and the ocean make up for CO$_2$ sinks of the same order of magnitude (Friedlingstein et al., 2001), the atmospheric pCO$_2$ increase scenario corresponds to 3320 GtC emitted over the duration of the experiment. In the first simulation, both calcification and dissolution depended on the saturation state of seawater with respect to calcite (CAL01). In the second experiment, calcification was independent of saturation state (= constant at values corresponding to the initial state) and dissolution was allowed to respond to changes in saturation driven by rising pCO$_2$ (CAL02). A third simulation was set up to isolate the effect of the solubility pump by keeping CaCO$_3$ production and dissolution at preindustrial values (CAL03). All three scenarios were doubled with a corresponding control-run (labeled CTL01 to CTL03) at constant pCO$_2$. Table 1 summarizes the model simulations carried out.

4 Results and discussion

4.1 The carbonate cycle in PISCES: Initial state

We plotted the distributions of alkalinity (ALK) and total dissolved inorganic carbon (DIC) along sections across the Atlantic (a), Pacific (c) and Indian Ocean (d) reached at the end of the spin up (pCO$_2$=278 ppm) on Figs. 2 and 3. Since the model was initialized with the global mean alkalinity concentration by Goyet et al. (2000), we include observed ALK on Figs. 2b, d, f along the same sections. Modeled distributions
of DIC are to the contrary independent of model initialization and reflect internal processes and air-sea gas exchange. We selected preindustrial DIC fields based on the Global Data Analysis Project (GLODAP, Key et al. 2004) for model output – data comparison (Fig. 3b, d, f). The modeled distributions of both tracers reflect the large-scale circulation pattern combined to air-sea gas exchange (DIC) and biological production, as well as remineralization. While the model reproduces the large scale structures of observed DIC fields in all three basins (Fig. 3), a satisfying correspondence between modeled and observed ALK fields is limited to the upper 1000 m of the water column (Fig. 2). Below 1000 m, observed ALK fields display strong latitudinal gradients. These features are not present in the GLODAP data set (Key et al., 2004), neither are they reproduced by the model, which predicts distributional patterns in line with GLODAP. Furthermore, they can not be explained in terms of circulation and/or biological processes. It is likely that they reflect the
underlying method of data interpolation, as the approach used by Goyet et al. (2000) introduces two discontinuities: one at 1000 m and the other at 0° longitude (Key et al., 2004). When limiting our comparison between model output and observation to the upper 1000 m, the model slightly overestimates surface ocean ALK, while it reproduces well the general structure of the fields.

Implementing a dependency for CaCO$_3$ formation on [CO$_3^{2-}$] and updating the parameterization of CaCO$_3$ dissolution in the model resulted in an improved representation of pre-industrial ALK fields compared to Aumont and Bopp (2006). The former model version predicted even higher surface ocean ALK levels, which together with low CaCO$_3$ export fluxes (Gehlen et al., 2006) suggests an underestimation of the strength of the carbonate counter-pump. The persistent, although smaller overestimation of surface ALK concentrations in the model version used during this study suggests that the amount of dissolution associated with zooplankton grazing (50%) may be too high.
Figure 4 presents the depth of the calcite saturation horizon predicted by (a) the model and computed for ALK and preindustrial DIC provided by (b) the GLODAP data base (Key et al., 2004). The preindustrial ocean is characterized by a deep calcite saturation horizon in the Atlantic Ocean. In the North Atlantic the entire water column is oversaturated with respect to calcite. The saturation horizon shoals along the flow path of the meridional overturning circulation from North to South across the Atlantic and from South to North in the Pacific, which is captured by the model. We note however that the predicted depth of the saturation horizon is too shallow, which in part reflects the coarse vertical model resolution.

Global rates were computed for the gross, as well as the net carbonate production and carbonate dissolution. They are summarized and compared to literature results in Table 2. The gross CaCO\textsubscript{3} production of 1.3 PgC/yr includes the carbonate fraction lost to dissolution during zooplankton grazing. In terms of CO\textsubscript{2} fluxes, the net production (0.8 PgC/yr) is the relevant quantity. It falls at the lower end of published estimates. The model predicts a global dissolution flux of 0.5 PgC/yr and compares well to the estimate given in Feely et al. (2004). The CaCO\textsubscript{3} flux at the lower model boundary reflects the boundary conditions and its inherent criteria of mass conservation.

The evolution with depth of the CaCO\textsubscript{3} dissolution rate is plotted on Fig. 5a for the Atlantic, Pacific and Indian Ocean. The differences in the evolution with depth of dissolution rates reflect the varying depth of saturation horizon for calcite (Fig. 5b) between ocean basins. Model derived dissolution rates are low compared to in situ dissolution rates summarized by Feely et al. (2004). The distribution of in situ dissolution rates with depth (Fig. 4, Feely et al., 2004) suggests that substantial dissolution occurs for depths <2000 m, which the model fails to reproduce. This does not imply that the global modeled dissolution flux is too low, but rather indicates a discrepancy in the vertical distribution of dissolution predicted by the model and derived from the observations. The missing dissolution at shallow depth is compensated by dissolution below the saturation horizon.

The in situ dissolution rates were estimated from alkalinity fields (excess alkalinity TA*, Feely et al., 2002) and
Table 2. The carbonate cycle in PISCES: Comparison between model output and data. All fluxes (production, dissolution) are in Pg CaCO$_3$-C/yr.

<table>
<thead>
<tr>
<th>Process</th>
<th>Model</th>
<th>Data</th>
<th>Data reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean global DIC (µM)</td>
<td>2292</td>
<td>2305</td>
<td>Key et al. (2004)</td>
</tr>
<tr>
<td>Mean global ALK (µM)</td>
<td>2389</td>
<td>2390</td>
<td>Goyet et al. (2002)</td>
</tr>
<tr>
<td>Gross CaCO$_3$ production</td>
<td>1.3</td>
<td>0.8–1.4</td>
<td>Igelias-Rodriguez et al. (2002); Lee (2001); Jin et al. (2006); Ridgwell et al. (2007)</td>
</tr>
<tr>
<td>Net CaCO$_3$ production</td>
<td>0.8</td>
<td>0.5</td>
<td>Feely et al. (2004)</td>
</tr>
<tr>
<td>Pelagic CaCO$_3$ dissolution</td>
<td>0.5</td>
<td>0.5</td>
<td>Feely et al. (2004)</td>
</tr>
<tr>
<td>CaCO$_3$ flux at lower boundary</td>
<td>0.3$^{(1)}$</td>
<td>0.3</td>
<td>Feely et al. (2004)</td>
</tr>
</tbody>
</table>

$^{(1)}$ From model lower boundary condition.

The depth attenuation of CaCO$_3$ fluxes provides an alternative approach to estimate dissolution rates. Feely et al. (2004) compiled data from several trap arrays and computed corresponding dissolution rates. They are smaller than in situ estimates reported in the same paper. Modeled dissolution rates fall within the range of trap derived ones (Feely et al., 2004). The use of sediment trap data has its own sets of caveats (e.g. over-/undertrapping due to turbulence especially for traps deployed at depths <1000 m; intrusion of swimmers, hypothesis of a 1-D system etc.). Below 1000 m the trapping efficiency of sediment traps is reported to be close to 1 (Yu et al., 2001). We selected only traps deployed at depths >1000 m for our analysis. The apparent dissolution rate parameter k^* was derived from CaCO$_3$ flux attenuation profiles and is not a free model parameter. The bulk dissolution rate is the product of the kinetic expression times the concentration of CaCO$_3$ particles (Eq. 6). The average CaCO$_3$ concentration is plotted with depth in Fig. 5c. Feely et al. (2004) used the depth attenuation of CaCO$_3$ fluxes from a different set of trap deployments to derive bulk dissolution rates. The correspondence between modeled dissolution rates and these estimates suggests that the concentration of CaCO$_3$ particles predicted by the model is in the right order of magnitude. To summarize the preceding discussion, the version of the PISCES model just presented computes a carbonate budget within the range of published estimates.

4.2 Transient experiments

Table 3 summarizes simulation results for CaCO$_3$ production, export and dissolution. The reference state of the model presented in the previous section will be referred to as CAL01-1×pCO$_2$ in the following discussion. Time series of (a) atmospheric pCO$_2$, (b) mean global CaCO$_3$ (calcite) saturation state of surface ocean waters, (c) net CaCO$_3$ production, (d) CaCO$_3$ export and (e) dissolution, as well as of the (f) cumulative air-sea exchange of CO$_2$ are reproduced on Fig. 6. Figure 7 presents maps of the saturation state of surface ocean waters with respect to calcite for (a) preindustrial conditions and (b) 4×pCO$_2$. Model results are presented for net CaCO$_3$ production and CaCO$_3$ dissolution rates integrated over the entire water column in Fig. 8.

The mean global saturation state of surface ocean waters (Fig. 6b) with respect to calcite decrease from $\Omega_c > 5$ at year 0 to $\Omega_c = 2$ end the end of the acidification scenario. Maps of Ω_c averaged over the top 100 m of the water column document that the preindustrial ocean is characterized by $\Omega_c > 4$ prevailing between 45° S and 50° N (Fig. 7a), which corresponds according to our parameterization to optimal conditions for calcification. At 4×pCO$_2$, $\Omega_c < 4$ is predicted everywhere.
Table 3. Summary of results. Model output is presented in absolute numbers for experiment CAL01 at 1×pCO$_2$, 2×pCO$_2$ and 4×pCO$_2$. For all experiments, model output is given as drift corrected % change at 4×pCO$_2$ relative to the control simulation at constant pCO$_2$.

<table>
<thead>
<tr>
<th>Process</th>
<th>CAL01-1×pCO$_2$</th>
<th>CAL01-2×pCO$_2$</th>
<th>CAL01-4×pCO$_2$</th>
<th>% change CAL01</th>
<th>% change CAL02</th>
<th>% change CAL03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net CaCO$_3$ production (Pg C/yr)</td>
<td>0.79</td>
<td>0.74</td>
<td>0.58</td>
<td>−27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CaCO$_3$ export 100 m (Pg C/yr)</td>
<td>0.59</td>
<td>0.55</td>
<td>0.42</td>
<td>−29</td>
<td>−3.6</td>
<td>0</td>
</tr>
<tr>
<td>Pelagic dissolution (Pg C/yr)</td>
<td>0.48</td>
<td>0.46</td>
<td>0.42</td>
<td>−16</td>
<td>+19</td>
<td>0</td>
</tr>
</tbody>
</table>

(>Fig. 6<). Time series: (a) atmospheric CO$_2$ (ppm) forcing used for acidification scenarios and control runs; (b) mean saturation state of surface ocean waters (0–100 m) with respect to calcite; (c) global net CaCO$_3$ production (plain line) and export at 100 m (stippled line); (d) global CaCO$_3$ dissolution flux; (e) cumulative air-sea flux of CO$_2$ on left axis, and C uptake in excess to CAL03 on right axis. CAL01 = production and dissolution of CaCO$_3$ responds to changes in carbonate chemistry; CAL02 = constant production, but dissolution responds to changes in carbonate chemistry; CAL03 = constant production and dissolution.

(Fig. 7b), suggesting suboptimal conditions for pelagic calcification across the global surface ocean.

Net CaCO$_3$ production decreases in response to anthropogenic CO$_2$ invasion (Fig. 6c) for time series and Fig. 8a, b, c for the spatial distribution). The model predicts a decrease of total production at 2×pCO$_2$ from 0.79 to 0.74 PgC/yr, which further drops to 0.58 PgC/yr at 4×pCO$_2$, yielding a total decrease of 27%. At the same time, the CaCO$_3$ export flux at 100 m (Fig. 6c) decreases by 29% over the course of experiment CAL01. The slightly higher decrease of export flux compared to calcification (27%) reflects the relative increase of dissolution.

The response of CaCO$_3$ dissolution to acidification of ocean waters is shown in Fig. 8d to f. Spatial patterns of Fig. 8e and f reflect bottom topography with increasing dissolution along topographic heights (for instance the mid-Atlantic ridge) and decreasing dissolution in the other areas. Since overall less carbonate particles are produced under rising atmospheric pCO$_2$, their complete dissolution will result...
in a lower absolute dissolution flux compared to the pre-industrial state. This happens outside areas of benthic CaCO₃ accumulation, where at 1×pCO₂ close to 100% of the carbonate flux gets dissolved before reaching the benthic boundary layer. In these areas, a shoaling of the saturation horizon will have little to zero impact on total dissolution. To the contrary, in regions with carbonate accumulation, a shoaling of the saturation horizon will result in an increase of the dissolution flux. Relative to total net production, dissolution increases from 61% at 1×pCO₂ to 72% at 4×pCO₂.

The decrease in calcification in CAL01 goes along with a relative decrease in surface water pCO₂, thereby increasing...
the capacity of the ocean for CO₂ uptake. An increase in pelagic CaCO₃ dissolution is expected to further enhance this effect due to alkalinity production. However, the lower flux of carbonate particles translates in an overall lower absolute dissolution flux (−16%, Table 3 and Fig. 6e), which partially counteracts the effect of decreasing production on air-sea CO₂ exchange. The combination of processes results in a net increase of the oceanic DIC inventory from 35 578 to 36 421 Gt C (=2.1%). In the experiment CAL02, where carbonate production was constant at preindustrial levels, we compute a net increase in dissolution of 19% (Table 3 and Fig. 6e). The effect of dissolution alone results in a DIC inventory increase of the same order of magnitude as for CAL01. This result stresses the importance of changes in CaCO₃ dissolution in addition to production, in controlling the magnitude of the full CaCO₃ feedback on atmospheric CO₂ increase.

Changes in DIC inventories computed for experiments CAL01 and CAL02 reflect the combined response of the solubility pump and CaCO₃ production and dissolution to increasing atmospheric pCO₂. Experiment CAL03 during which carbonate production and dissolution were kept constant at pre-industrial levels allows the contribution of the solubility pump to be singled out. During experiment CAL01, the cumulative uptake of CO₂ by the ocean in excess to the solubility pump is 5.9 Gt C (Fig. 6e). In contrast with CAL01, constant calcification and increasing dissolution in CAL02 combine into an additional 1.2 Gt C taken up in excess to CAL03 (Fig. 6e). Consequently, the effect of reduced calcification in CAL01 enhances the negative feedback to rising atmospheric CO₂ compared to CAL02, where only dissolution is at work. The cumulative ocean uptake of CO₂ of 5.9 Gt C during experiment CAL01 is low compared to the total change in DIC inventory of about 750 Gt C. It should however not preclude the expected consequence for the entire pelagic ecosystem.

4.3 Comparison of assessments of future changes in marine calcification

Heinze (2004) predicts a global decrease in CaCO₃ of 50% at the end of a model experiment similar to CAL01. The final atmospheric CO₂ concentration was however higher than 4×pCO₂. At 4×pCO₂, carbonate production declined by approximately 38% (Fig. 3 in Heinze, 2004) compared to 27% in this study. While Heinze (2004) used different forcing scenarios, the discrepancy in the predicted sensitivity of calcification to acidification is most likely due to differences in the parameterizations of CaCO₃ production and its dependency on pCO₂. Heinze (2004) lets the CaCO₃ production be linearly dependent on seawater pCO₂. It is however likely that the biological response is not linear with pCO₂, but rather follows an asymptotic type function. It is thus likely that Heinze (2004)’s estimate corresponds to an upper limit of the decrease of carbonate production in response to increasing pCO₂.

Ridgwell et al. (2007a) reach the opposite conclusion, namely that Heinze’s (2004) estimate would be the lower limit of the expected response. They point to the potential bias introduced by parameterizations based on experimental results obtained for Emiliania huxleyi. Ridgwell et al. (2007a) compiled experimental data documenting the calcification response of different organisms to increasing pCO₂. They fitted data from individual experiments (e.g. Bijma et al., 1999) or group of experiments (e.g. Zondervan et al., 2001) to the widely accepted rate expression of CaCO₃ precipitation

\[R_{\text{prec}} = k \times (1 - \Omega)\beta. \]

(8)

Inorganic precipitation of calcium carbonate is known to follow Eq. (8) (Zhong and Mucci, 1993, and references therein). The reaction rate order \(n \) determined for inorganic precipitation is strictly \(\geq 1 \). Interestingly, with the exception of corals for which a value of \(n = 1 \) was determined, Ridgwell et al. (2007a) derived values of \(n \) ranging from 0.2 to 0.75 from biogenic calcification experiments. Previous studies (Hales and Emerson, 1997; Gehlen et al., 2005) highlighted potential sources of uncertainty in the determination of the reaction rate order from the reassessment of experimental data. Whether values of \(n < 1 \) are a true characteristic of biotic calcification or an artifact introduced by fitting Eq. (8) to a limited set of scattered data needs further experimental elucidation.

The potential for a variable reaction of different calcifying species to ocean acidification needs to be stressed. Langer et al. (2006) report data on the calcification response of the coccolithophores Calcidiscus leptoporus and Coccolithus pelagicus to increased pCO₂. While to former displays an optimal growth at present day pCO₂ (~360 ppm), the later appears rather invariant to pCO₂ increase. The relationship between calcification and pCO₂ in C. leptoporus suggests decreased rates of PIC production during past periods of lower atmospheric pCO₂. Since decreased rates of PIC production correlate with changes in coccolith morphology (Langer et al., 2006), the analysis of the sedimentary record provides a means for the verification of this hypothesis. Langer et al. (2006) analyzed C. leptoporus laths from last glacial maximum and Holocene sediments and found no evidence for changes in coccolith morphology. The inconsistency between results obtained from laboratory experiments and analysis of geological samples, might indicate the adaptation of C. leptoporus to changes in carbonate chemistry. The impact of ocean acidification on marine calcifiers will ultimately depend on their capability to adapt. In this context, understanding the differential response of coccolithophore species to pCO₂ challenges our knowledge of the controls of biomineralization processes. The scenario CAL02 can be considered as an extreme end-member for the unlikely situation of 100% success in adaptation of pelagic calcifiers to
changes in carbonate chemistry. Under these circumstances only inorganic dissolution would respond to decreasing saturation state.

Next to adaptation at the species level, changes in community composition driven by the differential response of species to changing carbonate chemistry are likely to occur (Riebesell et al., 2000; Zondervan et al., 2001; Langer et al., 2006). Henderiks and Rickaby (2006) propose an evolutionary explanation to the emerging pattern of differences between species in pCO$_2$ tolerance. Following this line of thought, the differential tolerance of coccolithophore species reflects the conditions under which the species emerged in the past. If this hypothesis is confirmed, changes in carbonate chemistry might result in changes in species composition of calcifying communities, rather than in their decline. In such a scenario, the cosmopolitan *E. huxleyi* might be outcompeted by *C. pelagica*. The replacement of a species by another, even within a single functional type (e.g. pelagic calcifying autotroph), is likely to affect the ecosystem as a whole. Processes like adaptation and competition between species challenge our predictive capability of the biogeochemical, respectively ecological impacts of ocean acidification.

5 Conclusions

The biogeochemical model PISCES was updated to include a dependency of CaCO$_3$ production on the saturation of seawater with respect to calcite and a revised parameterization of CaCO$_3$ dissolution. The model reproduces a marine carbonate cycle largely consistent with independent estimates. The model underestimates CaCO$_3$ dissolution between 0 and 2000 m, which can in part be attributed to the fact that the model only considers calcite.

Model experiments were carried out in order to quantify the evolution of CaCO$_3$ production and dissolution under conditions of increasing atmospheric CO$_2$. Carbonate production decreased by 27% in response to a pCO$_2$ increase of 1% per year from the preindustrial value of 286 ppm to 4* pCO$_2$. Our study highlights the contribution of CaCO$_3$ dissolution to the feedback on increasing atmospheric pCO$_2$. Taken individually, the relative increase of dissolution in response to acidification drives an excess uptake of CO$_2$ from the atmosphere of 1.2 GtC over the time span of the experiment. The combined changes in CaCO$_3$ production and dissolution lead to 5.9 GtC transferred from the atmosphere to the ocean in excess to the solubility pump. Although this effect is low compared to the total change in DIC inventory of about 750 GtC, it should not hide the potential for major changes in ecosystem structure. The decrease in surface ocean saturation with respect to calcite threatens the competitiveness of pelagic calcifiers, among which *E. huxleyi* might be particularly vulnerable (Henderiks and Rickaby, 2006). A shift in species composition is likely to affect the entire food chain up to commercial fish. Associated changes in export production will modify the downward delivery of POC and thereby the availability of energy for the deep ocean and benthos.

Acknowledgements. This work was supported through EU grants 511106-2 (FP6 RTD project EUR-OCEANS) and GOCE-511176 (FP6 RTD project CARBOOCEAN) by the European Commission. M. G. acknowledges a visiting fellowship be the Hanse Institut for Advanced Study (Delmenhorst/Germany). This is publication number 2503 from LSCE.

Edited by: J. Middelburg

References

