Articles | Volume 17, issue 3
https://doi.org/10.5194/bg-17-683-2020
https://doi.org/10.5194/bg-17-683-2020
Research article
 | 
10 Feb 2020
Research article |  | 10 Feb 2020

High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling

Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler

Data sets

Supplementary data for: Effects of extraction conditions on the redox properties of soil organic matter (SOM) and its ability to stimulate microbial iron(III) mineral reduction by electron shuttling Y. Bai, E. Subdiaga, S. B. Haderlein, H. Knicker, and A. Kappler https://doi.org/10.1594/PANGAEA.904416

Download
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Altmetrics
Final-revised paper
Preprint