Articles | Volume 17, issue 12
https://doi.org/10.5194/bg-17-3135-2020
https://doi.org/10.5194/bg-17-3135-2020
Research article
 | 
19 Jun 2020
Research article |  | 19 Jun 2020

Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake

Kyle Delwiche, Junyao Gu, Harold Hemond, and Sarah P. Preheim

Related subject area

Biogeochemistry: Sediment
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022,https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022,https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022,https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022,https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022,https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary

Cited articles

Aldrich, C. and Feng, D.: Removal of heavy metals from wastewater effluents by biosorptive flotation, Miner. Eng., 13, 1129–1138, https://doi.org/10.1016/S0892-6875(00)00096-0, 2000. 
Aller, J. Y., Kuznetsova, M. R., Jahns, C. J., and Kemp, P. F.: The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols, J. Aerosol Sci., 36, 801–812, https://doi.org/10.1016/j.jaerosci.2004.10.012, 2005. 
Anderson, D. M., Stock, C. A., Keafer, B. A., Nelson, A. B., Thompson, B., McGillicuddy, D. J., Keller, M., Matrai, P. A., and Martin, J.: Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep-Sea Res. Pt. II, 52, 2522–2542, https://doi.org/10.1016/j.dsr2.2005.06.014, 2005. 
Arora-Williams, K., Olesen, S. W., Scandella, B. P., Delwiche, K., Spencer, S. J., Myers, E. M., Abraham, S., Sooklal, A., and Preheim, S. P.: Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake, Microbiome, 6, 165, https://doi.org/10.1186/s40168-018-0556-7, 2018. 
Backer, L. C.: Cyanobacterial harmful algal blooms (CyanoHABs): Developing a public health response, Lake Reserv. Manage., 18, 20–31, https://doi.org/10.1080/07438140209353926, 2002. 
Download
Short summary
In this study, we investigate whether bubbles transport sediments containing arsenic and cyanobacteria from the bottom to the top of a polluted lake. We measured arsenic and cyanobacteria from bubble traps in the lake and from an experimental bubble column in the laboratory. We found that bubble transport was not an important source of arsenic in the surface waters but that bubbles could transport enough cyanobacteria to the surface to exacerbate harmful algal blooms.
Altmetrics
Final-revised paper
Preprint