Articles | Volume 17, issue 7
https://doi.org/10.5194/bg-17-2107-2020
https://doi.org/10.5194/bg-17-2107-2020
Research article
 | 
17 Apr 2020
Research article |  | 17 Apr 2020

Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology

Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll

Related authors

Enhanced Weathering and related element fluxes – a cropland mesocosm approach
Thorben Amann, Jens Hartmann, Eric Struyf, Wagner de Oliveira Garcia, Elke K. Fischer, Ivan Janssens, Patrick Meire, and Jonas Schoelynck
Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020,https://doi.org/10.5194/bg-17-103-2020, 2020
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024,https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024,https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forest and grasslands in European temperate zone
Kinga Kulesza and Agata Hościło
EGUsphere, https://doi.org/10.5194/egusphere-2023-3017,https://doi.org/10.5194/egusphere-2023-3017, 2023
Short summary
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023,https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Direct foliar phosphorus uptake from wildfire ash
Anton Lokshin, Daniel Palchan, and Avner Gross
EGUsphere, https://doi.org/10.5194/egusphere-2023-2617,https://doi.org/10.5194/egusphere-2023-2617, 2023
Short summary

Cited articles

14688-1:2002: 14688-1:2002: Geotechnical investigation and testing–Identification and classification of soil–Part 1: Identification and description, International Organization for Standardization, Geneva, 2002. 
Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review, Biogeochemistry, 131, 173–202, https://doi.org/10.1007/s10533-016-0274-9, 2016. 
Amann, T. and Hartmann, J.: Ideas and perspectives: Synergies from co-deployment of negative emission technologies, Biogeosciences, 16, 2949–2960, https://doi.org/10.5194/bg-16-2949-2019, 2019. 
Amiotte Suchet, P., Probst, J. L., and Ludwig, W.: Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans, Global Biogeochem. Cy., 17, 1038, 2003. 
Anda, M., Shamshuddin, J., Fauziah, C. I., and Omar, S. R. S.: Dissolution of Ground Basalt and Its Effect on Oxisol Chemical Properties and Cocoa Growth, Soil Sci., 174, 264–271, https://doi.org/10.1097/SS.0b013e3181a56928, 2009. 
Download
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Altmetrics
Final-revised paper
Preprint