Articles | Volume 17, issue 5
https://doi.org/10.5194/bg-17-1327-2020
https://doi.org/10.5194/bg-17-1327-2020
Research article
 | 
16 Mar 2020
Research article |  | 16 Mar 2020

Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria

Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (22 Jan 2019) by Caroline P. Slomp
AR by Mark Hopwood on behalf of the Authors (21 Feb 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (08 Mar 2019) by Marilaure Grégoire
RR by Loes Gerringa (20 Mar 2019)
ED: Publish subject to minor revisions (review by editor) (05 Apr 2019) by Marilaure Grégoire
AR by Anna Wenzel on behalf of the Authors (24 Apr 2019)  Author's response
ED: Publish subject to technical corrections (08 May 2019) by Marilaure Grégoire
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Altmetrics
Final-revised paper
Preprint