Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 16, issue 2
Biogeosciences, 16, 425–436, 2019
https://doi.org/10.5194/bg-16-425-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 16, 425–436, 2019
https://doi.org/10.5194/bg-16-425-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jan 2019

Research article | 25 Jan 2019

Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type

Hilary Ford et al.
Related subject area  
Biogeochemistry: Soils
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil
Yanxia Nie, Xiaoge Han, Jie Chen, Mengcen Wang, and Weijun Shen
Biogeosciences, 16, 4277–4291, https://doi.org/10.5194/bg-16-4277-2019,https://doi.org/10.5194/bg-16-4277-2019, 2019
Short summary
Simulated wild boar bioturbation increases the stability of forest soil carbon
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019,https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Spatial changes in soil stable isotopic composition in response to carrion decomposition
Sarah W. Keenan, Sean M. Schaeffer, and Jennifer M. DeBruyn
Biogeosciences, 16, 3929–3939, https://doi.org/10.5194/bg-16-3929-2019,https://doi.org/10.5194/bg-16-3929-2019, 2019
Short summary
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Cited articles  
Adam, P.: Saltmarsh Ecology, Cambridge University Press, Cambridge, UK, 1990. 
Amundson, R.: The carbon budget in soils, Annu. Rev. Earth Planet. Sc., 29, 535–562, 2001. 
Armstrong, W., Wright, E. J., Lythe, S., and Gaynard, T. J.: Plant Zonation and the Effects of the Spring-Neap Tidal Cycle on Soil Aeration in a Humber Salt Marsh, J. Ecol., 73, 323–339, 1985. 
Arriola, J. M. and Cable, J. E.: Variations in carbon burial and sediment accretion along a tidal creek in a Florida salt marsh, Limnol. Oceanogr., 62, S15–S28, 2017. 
Arrouays, D., Saby, N., Walter, C., Lemercier, B., and Schvartz, C.: Relationships between particle-size distribution and organic carbon in French arable topsoils, Soil. Use. Manage., 22, 48–51, 2006. 
Publications Copernicus
Download
Short summary
Carbon stored in coastal wetlands is of global relevance to climate regulation, but broadscale inventories of this "blue carbon" are lacking. Sampling salt marshes in the UK, we developed a predictive tool with the capacity to predict up to 44 % of spatial variation in soil carbon from simple observations of plant community and soil type. Marsh-specific maps of soil carbon were also produced, demonstrating the application of this easy-to-use tool for landscape-scale predictions of blue carbon.
Carbon stored in coastal wetlands is of global relevance to climate regulation, but broadscale...
Citation