Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 16, issue 19
Biogeosciences, 16, 3835–3852, 2019
https://doi.org/10.5194/bg-16-3835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 16, 3835–3852, 2019
https://doi.org/10.5194/bg-16-3835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Oct 2019

Research article | 07 Oct 2019

Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance

Laurie M. Charrieau et al.
Related authors  
Improved wet splitter for micropalaeontological analysis, and assessment of uncertainty using data from splitters
Laurie M. Charrieau, Lene Bryngemark, Ingemar Hansson, and Helena L. Filipsson
J. Micropalaeontol., 37, 191–194, https://doi.org/10.5194/jm-37-191-2018,https://doi.org/10.5194/jm-37-191-2018, 2018
Short summary
Related subject area  
Earth System Science/Response to Global Change: Climate Change
Trend analysis of the airborne fraction and sink rate of anthropogenically released CO2
Mikkel Bennedsen, Eric Hillebrand, and Siem Jan Koopman
Biogeosciences, 16, 3651–3663, https://doi.org/10.5194/bg-16-3651-2019,https://doi.org/10.5194/bg-16-3651-2019, 2019
Short summary
Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
Alexandra T. Holland, Christopher J. Williamson, Fotis Sgouridis, Andrew J. Tedstone, Jenine McCutcheon, Joseph M. Cook, Ewa Poniecka, Marian L. Yallop, Martyn Tranter, Alexandre M. Anesio, and The Black & Bloom Group
Biogeosciences, 16, 3283–3296, https://doi.org/10.5194/bg-16-3283-2019,https://doi.org/10.5194/bg-16-3283-2019, 2019
Short summary
Ideas and perspectives: Synergies from co-deployment of negative emission technologies
Thorben Amann and Jens Hartmann
Biogeosciences, 16, 2949–2960, https://doi.org/10.5194/bg-16-2949-2019,https://doi.org/10.5194/bg-16-2949-2019, 2019
Short summary
When trees don’t act their age: size-deterministic tree-ring standardization for long-tern trend estimation in shade-tolerant trees
Rachel Dietrich and Madhur Anand
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-210,https://doi.org/10.5194/bg-2019-210, 2019
Revised manuscript accepted for BG
Short summary
Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019,https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Cited articles  
Alve, E.: Opportunistic features of the foraminifer Stainforthia fusiformis (Williamson): evidence from Frierfjord, Norway, J. Micropalaeontol., 13, 24–24, https://doi.org/10.1144/jm.13.1.24, 1994. 
Andersson, P., Håkansson, B., Håkansson, J., and Sahlsten, E.: SMHI Report: Marine Acidification – On Effects and Monitoring of Marine Acidification in the Seas Surrounding Sweden, Report Oceanography No. 92, 2008. 
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in: Tracking Environmental Change Using Lake Sediments, edited by: Last, W. M. and Smol, J. P., Vol. 1, Springer Netherlands, 2001. 
Asteman, I. P. and Schönfeld, J.: Recent invasion of the foraminifer Nonionella stella Cushman & Moyer, 1930 in northern European waters: evidence from the Skagerrak and its fjords, J. Micropalaeontol., 35, 20–25, https://doi.org/10.1144/jmpaleo2015-007, 2016. 
Bergsten, H., Nordberg, K., and Malmgren, B.: Recent benthic foraminifera as tracers of water masses along a transect in the Skagerrak, North-Eastern North Sea, J. Sea Res., 35, 111–121, https://doi.org/10.1016/S1385-1101(96)90740-6, 1996. 
Publications Copernicus
Download
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
We reconstructed environmental changes in the Öresund during the last 200 years, using...
Citation