Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 16, issue 2
Biogeosciences, 16, 369–381, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 16, 369–381, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Jan 2019

Research article | 24 Jan 2019

Soil nitrogen response to shrub encroachment in a degrading semi-arid grassland

Thomas Turpin-Jelfs et al.

Related authors

STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for simulating climate and climate change
Michael Bliss Singer, Katerina Michaelides, and Daniel E. J. Hobley
Geosci. Model Dev., 11, 3713–3726,,, 2018
Short summary
Runoff- and erosion-driven transport of cattle slurry: linking molecular tracers to hydrological processes
C. E. M. Lloyd, K. Michaelides, D. R. Chadwick, J. A. J. Dungait, and R. P. Evershed
Biogeosciences, 13, 551–566,,, 2016
Short summary
Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling
A. F. Charteris, T. D. J. Knowles, K. Michaelides, and R. P. Evershed
SOIL Discuss.,,, 2015
Manuscript not accepted for further review

Related subject area

Biogeochemistry: Soils
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986,,, 2020
Short summary
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059,,, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019,,, 2020
Short summary
Soil total phosphorus and nitrogen explain vegetation community composition in a northern forest ecosystem near a phosphate massif
Laura Matkala, Maija Salemaa, and Jaana Bäck
Biogeosciences, 17, 1535–1556,,, 2020
Short summary
Contrasting conifer species productivity in relation to soil carbon, nitrogen and phosphorus stoichiometry of British Columbia perhumid rainforests
John Marty Kranabetter, Ariana Sholinder, and Louise de Montigny
Biogeosciences, 17, 1247–1260,,, 2020
Short summary

Cited articles

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., and Sebastian Seung, H.: Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, 33, 2424–2426,, 2017. 
Bååth, E. and Anderson, T. H.: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques, Soil Biol. Biochem., 35, 955–963,, 2003. 
Batchily, A. K., Post, D. F., Bryant, R. B., and Breckenfeld, D. J.: Spectral reflectance and soil morphology characteristics of Santa Rita Experimental Range soils, Santa Rita Experimental Range: 100 Years (1903 to 2003) of Accomplishments and Contributions, Tucson, AZ, 2003, 175–182, 2003. 
Belnap, J.: Surface disturbances: their role in accelerating desertification, Environ. Monit. Assess., 37, 39–57,, 1995. 
Bennett, L. T., Judd, T. S., and Adams, M. A.: Growth and nutrient content of perennial grasslands following burning in semi-arid, sub-tropical Australia, Plant Ecol., 164, 185–199,, 2003. 
Publications Copernicus
Short summary
Increasing shrub cover promotes land degradation in semi-arid grasslands and has the potential to impact the soil nitrogen pool, which is essential to primary production. Our study showed that increasing shrub cover concentrates soil nitrogen into localised patches beneath shrub canopies. Further, we determined that increasing shrub cover inhibits inputs of nitrogen by the soil microbial community. Thus, we conclude this phenomenon can perturb nitrogen cycling in these ecosystems.
Increasing shrub cover promotes land degradation in semi-arid grasslands and has the potential...