
Annex : Classi�cation - Description of the method

This method involves two steps : i) the singular value decomposition theorem is used to
extract the important features from the data; ii) then the extracted features are combined in a
classi�cation step to form new features, each of which describing a subset of the data

1 Singular value decomposition

Formally, the singular value decomposition (SVD) of an m×n matrix A is a factorization of the
form UΣVT, where U is an m ×m unitary matrix, Σ is a m × n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V is an n×n unitary matrix. The diagonal
entries σi of Σ are known as the singular values of A. The columns of U and the columns of V
are called the left-singular vectors and right-singular vectors of A, respectively.

Let A = {ai,j}1≤i≤m,1≤j≤n, and suppose m ≤ n. Then

ai,j =

m∑
k=1

σkui,kvj,k (1)

with U = {ui,j}1≤i≤m,1≤j≤m, V = {vi,j}1≤i≤n,1≤j≤m, and singular values

σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0

The singular vectors are orthonormal, i.e.,

m∑
i=1

ui,kui,l =

n∑
j=1

vj,kvj,l =

{
0 if k 6= l
1 if k = l

The �rst L leading terms (1 ≤ L ≤ m) of the singular value expansion (Eq. (1)) can be used

to approximate A by A(L) = {a(L)
i,j }1≤i≤m,1≤j≤n, with

a
(L)
i,j =

L∑
k=1

σkui,kvj,k (2)

Moreover, the variance explained by each term is in proportion to the magnitude of the
respective singular value, since

m∑
i=1

n∑
j=1

(ai,j − a(L)
i,j )2 =

m∑
i=1

n∑
j=1

a2i,j −
L∑

k=1

σ2
k (3)

So an e�cient compaction of the data set is thus achieved and, as a result, the meaningful
information is separated from the redundancy and noise inherent in the data. The choice of the
number L of leading terms is crucial for the next step (classi�cation) since the number of classes
will be the same. For this purpose, Eq. (3) will be a decisive assistance in the choice of this
number.

2 Classi�cation

In this step, the features extracted by SVD are recombined to form mutually exclusive classes.
The goal is to rearrange the leading terms of SVD to form characteristic shape functions. The
left and singular vectors are rotated so that the approximation is preserved.
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2.1 Rotation of the singular vectors

In the following, we consider that the number of leading terms L is selected, and, in order to
symplify the notation, A means A(L), Σ is the diagonal matrix of the �rst L singular values,
and U and V are respectively the �rst L left and right singular vectors.

A = UΣVT

Let R be a square L×L rotation matrix; its transpose is equal to its inverse : RRT = I where I
is the identity matrix

A = URRTΣ(V)
T

and, as RT and Σ commute :
A = URΣRTVT

A = URΣ(VR)T

Now, let's group the terms as follows : URΣ = S and VR = C; then

A = SCT

S = {si,k} is am×Lmatrix whose columns will be called the characteristic shapes, and C = {cj,k}
is a n × L matrix whose columns are the new right vectors, called coe�cients of characteristic
shapes.

ai,j =

L∑
k=1

si,kcj,k (4)

coe�cient cj,k referring to the jth column of matrix A. Note that orthonormality of C is pre-
served.

2.2 Criterium for the determination of groups

The goal of the classi�cation is to enhance features, each of which describing a subset of the
data. We called these features characteristic shapes. Consider the jth column of matrix A; we
call it the jth data pro�le :

âj = {ai,j}1≤i≤m
The kth characteristic shape is written as :

ŝk = {si,k}1≤i≤m (5)

and Eq.(4) as :

âj =

L∑
k=1

cj,kŝk

The jth data pro�le is a linear combination of the characteristic shapes. The aim of the op-
timisation is that such a pro�le is best described by one feature and only one; suppose it is
characteristic shape ŝk1

. Then
cj,k1 � cj,k2 ∀k2 6= k1

A mathematical statement of this requirement would be

n∑
j=1

(cj,k1
cj,k2

)2minimum

So the criterion adopted to determine the rotation matrix is

L∑
k1,k2=1
k2>k1

n∑
j=1

(cj,k1
cj,k2

)2minimum
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2.3 Numerical resolution

Now we have to �nd the rotation matrix in order to solve the problem of minimization. For that,
we use the fact that any rotation matrix of size L × L can be constructed as a product of at
most L × (L − 1)/2 Givens rotation matrices. A Givens rotation is represented by a matrix of
the form

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


where c = cos(θ) and s = sin(θ) appear at the intersections ith and jth rows and columns.

The rotation matrix R is written as :

R =

L∏
i,j=1
j>i

G(i, j, θi,j)

The minimization focuses on the L× (L− 1)/2 θi,j angles of Givens rotations. It is achieved by
the method of Nelder and Mead (1965), that uses only function values and is robust.

2.4 Achieving classi�cation

Let minimization being achieved; S and C are respectively the optimal matrix of characteristic
shapes and the optimal matrix of coe�cients. We de�ned L groups corresponding to the L
characteristic shapes. At characteristic shape ŝk correspond the group of pro�les Gk

Gk = {âj =

L∑
l=1

cj,lŝl, j ∈ [[1;n]], max
l=1,L

|cj,l| = |cj,k|}

In other words, a pro�le âj belongs to group k if its coe�cient with the greatest absolute value
is the coe�cient of ŝk.

Once each pro�le is a�ected to a group, we de�ne the mean shapes for the groups. Let Nk

be the set of indexes of pro�les of group Gk

Nk = {j ∈ [[1;n]], âj ∈ Gk}

and nk the number of elements of Nk. The mean coe�cient for the group is de�ned as :

c̄k = 1/nk
∑
j∈Nk

cj,k (6)

and the mean shape of group k as :

s̄k = c̄kŝk (7)
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