Research article
15 Mar 2019
Research article | 15 Mar 2019
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena et al.
Related authors
Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment
C. Boix-Fayos, E. Nadeu, J. M. Quiñonero, M. Martínez-Mena, M. Almagro, and J. de Vente
Hydrol. Earth Syst. Sci., 19, 1209–1223, https://doi.org/10.5194/hess-19-1209-2015,https://doi.org/10.5194/hess-19-1209-2015, 2015
Short summary
Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment
C. Boix-Fayos, E. Nadeu, J. M. Quiñonero, M. Martínez-Mena, M. Almagro, and J. de Vente
Hydrol. Earth Syst. Sci., 19, 1209–1223, https://doi.org/10.5194/hess-19-1209-2015,https://doi.org/10.5194/hess-19-1209-2015, 2015
Short summary
Related subject area
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-1,https://doi.org/10.5194/bg-2019-1, 2019
Revised manuscript accepted for BG
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland
Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen
Biogeosciences, 15, 4447–4457, https://doi.org/10.5194/bg-15-4447-2018,https://doi.org/10.5194/bg-15-4447-2018, 2018
Short summary
In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography
Yi-Tse Weng, Chun-Chieh Wang, Cheng-Cheng Chiang, Heng Tsai, Yen-Fang Song, Shiuh-Tsuen Huang, and Biqing Liang
Biogeosciences, 15, 3133–3142, https://doi.org/10.5194/bg-15-3133-2018,https://doi.org/10.5194/bg-15-3133-2018, 2018
Short summary
Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data
Juha Mikola, Tarmo Virtanen, Maiju Linkosalmi, Emmi Vähä, Johanna Nyman, Olga Postanogova, Aleksi Räsänen, D. Johan Kotze, Tuomas Laurila, Sari Juutinen, Vladimir Kondratyev, and Mika Aurela
Biogeosciences, 15, 2781–2801, https://doi.org/10.5194/bg-15-2781-2018,https://doi.org/10.5194/bg-15-2781-2018, 2018
Short summary
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
Flux balance modeling to predict bacterial survival during pulsed-activity events
Nicholas A. Jose, Rebecca Lau, Tami L. Swenson, Niels Klitgord, Ferran Garcia-Pichel, Benjamin P. Bowen, Richard Baran, and Trent R. Northen
Biogeosciences, 15, 2219–2229, https://doi.org/10.5194/bg-15-2219-2018,https://doi.org/10.5194/bg-15-2219-2018, 2018
Short summary
Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Xiao Han, Cong Xu, Jennifer A. J. Dungait, Roland Bol, Xiaojie Wang, Wenliang Wu, and Fanqiao Meng
Biogeosciences, 15, 1933–1946, https://doi.org/10.5194/bg-15-1933-2018,https://doi.org/10.5194/bg-15-1933-2018, 2018
Short summary
Soil properties determine the elevational patterns of base cations and micronutrients in the plant–soil system up to the upper limits of trees and shrubs
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018,https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018,https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Cited articles
Barreto, R. C., Madari, B. E., Maddock, J. E. L., Franchini, J., and Costa,
A. R.: The impact of soil management on aggregation, carbon stabilization and
carbon loss as
CO2 in the surface layer of a Rhodic Ferralsol in
Southern Brazil, Agr. Ecosyst. Environ., 132, 243–251.
https://doi.org/10.1016/j.agee.2009.04.008, 2009.
Berhe, A. A. and Kleber, M.: Erosion, deposition, and the persistence of soil
organic matter: Mechanistic considerations and problems with terminology,
Earth Surf. Proc. Land., 38, 908–912, https://doi.org/10.1002/esp.3408, 2013.
Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., and Harte, J.: Persistence of soil organic matter in
eroding versus
depositional landform positions, J. Geophys. Res.-Biogeo.,
117, G02019, https://doi.org/10.1029/2011JG001790, 2012.
Berhe, A. A., Barnes, R. T., Six, J., and Marín-Spiotta, E.: Role of
Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon,
Nitrogen, and Phosphorus, Annu. Rev. Earth Pl. Sc., 46, 521–548,
https://doi.org/10.1146/annurev-earth-082517-010018, 2018.
Boix-Fayos, C., Barbera, G. G., López-Bermúdez, F., and Castillo, V.
M.: Effects of check dams, reforestation and land use changes on river
channel morphology: Case study of the Rogativa catchment (Murcia, Spain),
Geomorphology, 91, 103–123, https://doi.org/10.1002/hyp.7115, 2007.
Boix-Fayos, C., Nadeu, E., Quiñonero, J. M., Martínez-Mena, M.,
Almagro, M., and de Vente, J.: Sediment flow paths and associated organic
carbon dynamics across a Mediterranean catchment, Hydrol. Earth Syst. Sci.,
19, 1209–1223, https://doi.org/10.5194/hess-19-1209-2015, 2015.
Courtier-Murias, D., Simpson, A. J., Marzadori, C., Baldoni, G., Ciavatta,
C., Fernández, J. M., López-de-Sá, E. G., and Plaza, C.:
Unraveling the long-term stabilization mechanisms of organic materials in
soils by physical fractionation and NMR spectroscopy, Agr. Ecosyst. Environ.,
171, 9–18, https://doi.org/10.1016/j.agee, 2013.
De Clercq, T., Heiling, M., Dercon, G., Resch, C., Aigner, M., Mayer, L. Mao,
Y., Elsen, A., Steier, P., Leifeld, J., and Merck, R.: Predicting soil
organic matter stability in agricultural fields through carbon and nitrogen
stable isotopes, Soil Biol. Biochem., 88, 29–38,
https://doi.org/10.1016/j.soilbio.2015.05.011, 2015.
De Girolamo, A. M., Bouraoui, F., Buffagni, A., Pappagallo, G., and Lo Porto,
A.: Hydrology under climate change in a temporary river system: Potential
impact on water balance and flow regime, River Res. Appl., 33, 1219–1232,
https://doi.org/10.1002/rra.3165, 2017.
Del Galdo, I. Six, J., Peressotti, A., and Cotrufo, M. F.: Assessing the
impact of land-use change on soil C sequestration in agricultural soils by
means of organic matter fractionation and stable C isotopes, Glob. Change
Biol., 9, 1204–1213, 2003.
Denef, K., Zotarelli, L., Boddey, R. M., and Six, J.:
Microaggregate-associated carbon as a diagnostic fraction for
management-induced changes in soil organic carbon in two Oxisols, Soil Biol.
Biochem., 39, 1165–1172, https://doi.org/10.1016/j.soilbio.2006.12.024, 2007.
Denef, K. J., Six, J., Merckx, R., and Paustian, K.: Carbon sequestration in
microaggregates of no-tillage soils with different clay mineralogy, Soil Sci.
Soc. Am. J., 68, 1935–1944, ISSN: 0361-5995, 1435-0661, 2004.
Diehl, T. H.: A modified siphon sampler for shallow water: U.S. Geological
Survey Scientific Investigations Report 2007–5282, 11 pp., 2008.
Doetterl, S., Six., J., Van Wesemael B., and Van Oost, K.: Carbon cycling in
eroding landscapes: geomorphic controls on soil organic C pool composition
and C stabilization, Glob. Change Biol., 18, 2218–2232,
https://doi.org/10.1111/j.1365-2486.2012.02680.x, 2012.
Doetterl, S., Berhe, A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.:
Erosion, deposition and soil carbon: A review of process-level controls,
experimental tools and models to address C cycling in dynamic landscapes,
Earth-Sci. Rev., 154, 102–122 , https://doi.org/10.1016/j.earscirev.2015.12.005, 2016.
Elliott, E. T.: Aggregate structure and carbon, nitrogen, and phosphorus in
native and cultivated soils, Soil Sci. Soc. Am. J., 50, 627–633,
https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986.
Elliott, E. T., Palm, C. A., Reuss, D. E., and Monz, C. A: Organic matter
contained in soil aggregates from a tropical chronosequence: correction for
sand and light fraction, Agr. Ecosyst. Environ., 34, 443–451,
https://doi.org/10.1016/0167-8809(91)90127-J, 1991.
Garcia-Franco, N., Wiesmeier, M., Goberna, M., Martínez-Mena, M., and
Albaladejo, J.: Carbon dynamics after afforestation of semiarid shrublands:
implications of site preparation techniques, Forest Ecol. Manage., 319,
107–115, https://doi.org/10.1016/j.foreco.2014.01.043, 2014.
Garcia-Franco, N., Martínez-Mena, M., Goberna, M., and Albaladejo, J.:
Changes in soil aggregation and microbial community structure control carbon
sequestration after afforestation of semiarid shrublands, Soil Biol.
Biogeochem., 87, 110–121, https://doi.org/10.1016/j.soilbio.2015.04.012, 2015a.
Garcia-Franco, N., Albaladejo J., Almagro, M., and Martínez-Mena, M.:
Beneficial effects of reduced tillage and green manure on soil aggregation
and stabilization of organic carbon in a Mediterranean agroecosystem, Soil
Till. Res., 153, 66–75, https://doi.org/10.1016/j.still.2015.05.010, 2015b.
Golchin, A., Clarke, P., Oades, J. M., and Skjemstad, J. O.: The effects of
cultivation on the composition of organic-matter and structural stability of
soils, Aust. J. Soil Res., 33, 975–993, https://doi.org/10.1071/SR9950975, 1995.
Gregorich, E. G., Greer, K. J., Anderson, D. W., and Liang, B. C.: Carbon
distribution and losses: Erosion and deposition effects, Soil Till. Res., 47,
291–302, https://doi.org/10.1016/S0167-1987(98)00117-2, 1998.
Hoffmann, T., Mudd, S. M., van Oost, K., Verstraeten, G., Erkens, G., Lang,
A., Middelkoop, H., Boyle, J., Kaplan, J. O., Willenbring, J., and Aalto, R.:
Short Communication: Humans and the missing C-sink: erosion and burial of
soil carbon through time, Earth Surf. Dynam., 1, 45–52,
https://doi.org/10.5194/esurf-1-45-2013, 2013.
Howard, D. M. and Howard, P. J. A.: Relationships between
CO2
evolution, moisture content and temperature for a range of soil types, Soil
Biol. Biochem., 25, 1537–1537, https://doi.org/10.1016/0038-0717(93)90008-Y, 1993.
Hu, Y. and Kuhn, N. J.: Erosion-induced exposure of SOC to mineralization in
aggregated sediment, Catena, 137, 517–525, https://doi.org/10.1007/s10533-016-0211-y,
2016.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update
2015. International Soil Classification System for Naming Soils and Creating
Legends for Soil Maps, World Soil Resources Reports No. 106, Rome, FAO, 2015.
Kennedy, M. J., Pevear, D. R., and Hill, R. J.: Mineral surface control of
organic carbon in black shale, Science, 295, 657–660,
https://doi.org/10.1126/science.1066611, 2002.
Kirkels, F. M. S. A., Cammeraat L. H., and Kuhnb, N. J.: The fate of soil
organic carbon upon erosion, transport and deposition in agricultural
landscapes – A
review of different concepts, Geomorphology, 226, 94–105,
https://doi.org/10.1016/j.geomorph.2014.07.023, 2014.
Lal, R.: Soil erosion and carbon dynamics, Soil Till. Res., 81, 137–142,
https://doi.org/10.1016/j.still.2004.09.002, 2005.
Liu, C., Li, Z., Chang, X, He, J. Nie, X, Liu, L, Xiao, H. Wang, D., Peng,
H., and Zeng, G.: Soil carbon and nitrogen sources and redistribution as
affected by erosion and deposition processes: A case study in a loess
hilly-gully catchment, China, Agr. Ecosyst. Environ., 253, 11–22,
https://doi.org/10.1016/j.agee.2017.10.028, 2018.
Nadeu, E., de Vente, J. Martínez-Mena, M., and Boix-Fayos, C.: Exploring
particle size distribution and organic carbon pools mobilized by different
erosion processes at the catchment scale, J. Soil. Sediment., 11, 667–678,
https://doi.org/10.1007/s11368-011-0348-1, 2011.
Nadeu, E., Berhe, A. A., De Vente, J., and Boix-Fayos, C.: Erosion,
deposition and replacement of soil organic carbon in Mediterranean
catchments: a geomorphological, isotopic and land use change approach,
Biogeosciences, 9, 1099–1111, https://doi.org/10.5194/bg-9-1099-2012, 2012.
Nie, X., Li, Z., Huang, J., Liu, L., Xiao, H., Liu, C., and Zeng, G.: Thermal
stability of organic carbon in soil aggregates as affected by soil erosion
and deposition, Soil Till. Res., 175, 82–90,
https://doi.org/10.1016/j.still.2017.08.010, 2018.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and
implications for management, Plant Soil, 76, 319–337, 1984.
Paul, E. A., Morris, S. J., and Boehm, S.: The determination of soil C pool
sizes and turnover rates: biophysical fractionation and tracers, in:
Assessment Methods for Soil Carbon (Advances in Soil Science),edited by: Lal,
R., Kimble, J. M., Follett, R. F., and Stewart, B. A., CRC Press LLC, Boca
Raton, FL, USA, 193–206, 2001.
Pérez-Cutillas, P., Cataldo, M. F., Zema, D., de Vente, J., and
Boix-Fayos, C.: Efectos de la revegetación a escala de cuenca sobre el
caudal y la evapotranspiración en ambiente mediterráneo, Cuenca del
Taibilla (SE de España), Bosque, 39, 119–129,
2018.
Polyakov, V. O. and Lal, R.: Soil organic matter and
CO2 emission
as affected by water erosion on field runoff plots, Geoderma, 143, 216–222,
https://doi.org/10.1016/j.geoderma.2007.11.005, 2008.
Quinton, J., Govers, G., Van Oost, and Bardgett, R.: The impact of
agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3,
311–314, https://doi.org/10.1038/ngeo838, 2010.
Quiñonero-Rubio, J. M., Nadeu, E., Boix-Fayos, C., and de Vente, J.:
Evaluation of the Effectiveness of Forest Restoration and Check-Dams to
Reduce Catchment Sediment Yield, Land Degrad. Dev., 27, 1018–1031,
https://doi.org/10.1002/ldr.2331, 2016.
Ran, L., Lu, X. X., and Xin, Z.: Erosion-induced massive organic carbon
burial and carbon emission in the Yellow River basin, China, Biogeosciences,
11, 945–959, https://doi.org/10.5194/bg-11-945-2014, 2014.
Razafimbelo, T. M., Albrecht, A., Oliver, R., Chapuis-Lardy, L., and Feller,
C.: Aggregate associated-C and physical protection in a tropical clayey soil
under Malagasy conventional and no-tillage systems, Soil Till. Res., 98,
140–149, https://doi.org/10.1016/j.still.2007.10.012, 2008.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon
dynamics in topsoil and in subsoil may be controlled by different regulatory
mechanisms, Glob. Change Biol., 16, 416–426,
https://doi.org/10.1111/j.1365-2486.2009.01884.x, 2010.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D.
B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J.,
Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y.,
Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K.,
Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water
scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250,
https://doi.org/10.1073/pnas.1222460110, 2014.
Six, J. and Paustian, K.: Aggregate-associated soil organic matter as an
ecosystem property and a measurement tool, Soil Biol. Biochem., 68, A4–A9,
https://doi.org/10.1016/j.soilbio.2013.06.014, 2014.
Six, J., Elliott, E. T., and Paustian, K.: Soil structure and organic matter:
I. Distribution of aggregate-size classes and aggregate-associated carbon,
Soil Sci. Soc. Am. J., 64, 681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000.
Six, J., Bossuyt, H., Degryze, S., and Denef, K. A.: history of research on
the link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004.
Sodhi, G. P. S., Beri, V., and Benbi, D. K.: Soil aggregation and
distribution of carbon and nitrogen in different fractions under long-term
application of compost in rice–wheat system, Soil Till. Res., 103, 412–418,
https://doi.org/10.1016/j.still.2008.12.005, 2009.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: coupling
weathering and erosion to carbon burial, Global Biogeochem. Cy., 12,
231–257, https://doi.org/10.1029/98GB00741, 1998.
Starr, G. C., lal, R., Malone, R., Hotherm, D., owens, L., and Kimble, J.: Modeling soil
carbon transported by water erosion processes, Land Degrad. Dev., 11, 83–91,
2000.
Trigalet S., Van Oost, K. Roisin, C., and van Wesemael, B.: Carbon associated
with clay and fine silt as an indicator for SOC decadal evolution under
different residue management practices, Agr. Ecosyst. Environ., 196, 1–9,
https://doi.org/10.1016/j.agee.2014.06.011, 2014.
Vadher, A. N., Millett, J., Stubbington, R., and Wood, P. J.: Drying duration
and stream characteristics influence macroinvertebrate survivorship within
the sediments of a temporary channel and exposed gravel bars of a connected
perennial stream, Hydrobiologia, 814, 121–132,
https://doi.org/10.1007/s10750-018-3544-9, 2018.
Van Hemelryck, H., Fiener, P., VanOost, K., and Govers, G.: The effect of
soil redistribution on soil organic carbon: an experimental study,
Biogeosciences, 7, 3971–3986, https://doi.org/10.5194/bg-7-3971-2010, 2010.
Van Hemelryck, H., Govers, G., Van Oost, K., and Merckx, R.: Evaluating the
impact of soil redistribution on the in situ mineralization of soil organic
carbon, Earth Surf. Proc. Land., 36, 427–438, https://doi.org/10.1002/esp.2055, 2011.
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, W. J.,
Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V.,
Marques da Silva, J. R., and Merckx, R.: The Impact of Agricultural Soil
Erosion on the Global Carbon Cycle, Science New Series, 318, 626–629,
https://doi.org/10.1126/science.1145724, 2007.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H.,
Guggenberger, G.,Matzner, E., and Marschner, B.: SOM fractionation methods:
relevance to functional pools and to stabilization mechanisms, Soil Biol.
Biochem., 39, 2183–2207, https://doi.org/10.1016/j.soilbio.2007.03.007, 2007.
Wang, X., Liu, G., and Liu, S.: Effects of gravel on grassland soil carbon
and nitrogen in the arid regions of the Tibetan Plateau, Geoderma, 166,
181–188, https://doi.org/10.1016/j.geoderma.2011.07.028, 2011.
Wang, X., Cammeraat, E., Cerli, C., and Kalbitz, K.: Soil aggregation and the
stabilization of organic carbon as affected by erosion and deposition, Soil
Biol. Biochem., 72, 55–65, https://doi.org/10.1016/j.soilbio.2014.01.018, 2014.
Wang, Z., Govers, G., Steegen, A., Clymans,W., Van den Putte, A., Langhans,
C., Merckx, R., and Van Oost, K.: Catchment-scale carbon redistribution and
delivery by water erosion in an intensively cultivated area, Geomorphology,
124, 65–74, https://doi.org/10.1016/j.geomorph.2010.08.010, 2010.
Wisser, D., Frolking, S., Hagen, S., and Bierken M. F. P: Beyond peak
reservoir storage? A global estimate of declining water storage capacity in
large reservoirs, Water Resour. Res., 49, 5732–5739, https://doi.org/10.1002/wrcr.20452,
2013.
Xie, J., Hou, M., Zhou, Y., Wang, R., Zhang, S., Yang, X., and Sun, B.:
Carbon sequestration and mineralization of aggregate-associated carbon in an
intensively cultivated Anthrosol in north China as affected by long term
fertilization, Geoderma, 296, 1–9, https://doi.org/10.1016/j.geoderma.2017.02.023, 2017.
Zimmermann, M., Leifeld, J., Schmidt, N. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x,
2007.