Articles | Volume 15, issue 24
https://doi.org/10.5194/bg-15-7403-2018
https://doi.org/10.5194/bg-15-7403-2018
Research article
 | 
14 Dec 2018
Research article |  | 14 Dec 2018

Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California

Kerry Cawse-Nicholson, Joshua B. Fisher, Caroline A. Famiglietti, Amy Braverman, Florian M. Schwandner, Jennifer L. Lewicki, Philip A. Townsend, David S. Schimel, Ryan Pavlick, Kathryn J. Bormann, Antonio Ferraz, Emily L. Kang, Pulong Ma, Robert R. Bogue, Thomas Youmans, and David C. Pieri

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (14 Aug 2018) by Jochen Schöngart
AR by Kerry Cawse-Nicholson on behalf of the Authors (09 Sep 2018)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (17 Sep 2018) by Jochen Schöngart
AR by Kerry Cawse-Nicholson on behalf of the Authors (17 Oct 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (02 Nov 2018) by Jochen Schöngart
AR by Kerry Cawse-Nicholson on behalf of the Authors (07 Nov 2018)  Author's response    Manuscript
Download
Short summary
Carbon dioxide levels are rising globally, and it is important to understand how this rise will affect plants over long time periods. Volcanoes such as Mammoth Mountain, California, have been releasing CO2 from their flanks for decades, and this provides a test environment in order to study the way plants respond to long-term CO2 exposure. We combined several airborne measurements to show that plants may have fewer, more productive leaves in areas with increasing CO2.
Altmetrics
Final-revised paper
Preprint