Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 3
Biogeosciences, 15, 721–732, 2018
https://doi.org/10.5194/bg-15-721-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 721–732, 2018
https://doi.org/10.5194/bg-15-721-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Feb 2018

Research article | 05 Feb 2018

Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA

Ayumi Sugiyama1,2,3, Suguru Masuda1, Kazuyo Nagaosa1, Maki Tsujimura3, and Kenji Kato1 Ayumi Sugiyama et al.
  • 1Department of Geosciences, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan
  • 2Asano Taiseikiso Engineering Co., Ltd., Tokyo 110-0014, Japan
  • 3Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan

Abstract. A total of 2 to 3 million tons of spring water flushes out from the foot of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport, residence time of stored groundwater at Mt. Fuji was estimated at  ∼  15–30 years by the 36Cl ∕ Cl ratio (Tosaki et al., 2011). This range, however, represents the average residence time of groundwater that was mixed before it flushed out. To elucidate the route of groundwater in a given system, we determined signatures of direct impacts of rainfall on groundwater, using microbial, stable isotopic (δ18O), and chemical analyses (concentration of silica). Chemical analysis of the groundwater gave an average value of the water, which was already mixed with waters from various sources and routes in the subsurface environment. The microbial analysis suggested locations of water origin and paths.

In situ observation during four rainfall events revealed that the stable oxygen isotopic signature obtained from spring water (at 726 m a.s.l., site SP-0 m) and shallow groundwater (at 150 m a.s.l., site GW-42 m), where the average recharge height from rainfall was 1700–1800 m, became greater than values observed prior to a torrential rain producing more than 300 mm of precipitation. The concentration of silica decreased after this event. In addition, the abundance of Bacteria in spring water increased, suggesting the influence of heavy rain. Such changes did not appear when rainfall was less than 100 mm per event. The above findings indicate a rapid flow of rain through the shallow part of the aquifer, which appeared within a few weeks of torrential rain extracting abundant microbes from soil in the studied geologic setting. Interestingly, we found that after the torrential rain, the abundance of Archaea increased in the deep groundwater at site GW-550 m,  ∼  12 km downstream of SP-0 m. However, chemical parameters did not show any change after the event. This suggests that strengthened piston flow caused by the heavy rain transported archaeal particles from the geologic layer along the groundwater route. This finding was supported by changes in constituents of Archaea, dominated by Halobacteriales and Methanobacteriales, which were not seen from other observations. Those two groups of Archaea are believed to be relatively tightly embedded in the geologic layer and were extracted from the environment to the examined groundwater through enforced piston flow. Microbial DNA can thus give information about the groundwater route, which may not be shown by analysis of chemical materials dissolved in the groundwater.

Publications Copernicus
Download
Short summary
The direct impact of rainfall on groundwater at Mt. Fuji, the largest volcanic mountain in Japan, was elucidated by multiple analyses including microbial DNA. Bacterial abundance and DNA not only supported the findings on the movement of groundwater obtained from chemical analyses but also elucidated chemically unseen flow. Evidence of piston flow in deep groundwater was first shown through changes in archaeal density and diversity. Microbial analysis extends our understanding of groundwater.
The direct impact of rainfall on groundwater at Mt. Fuji, the largest volcanic mountain in...
Citation