Research article
27 Nov 2018
Research article | 27 Nov 2018
Alteration of nitrous oxide emissions from floodplain soils by aggregate size, litter accumulation and plant–soil interactions
Martin Ley et al.
Related authors
Direct O2 control on the partitioning between denitrification and dissimilatory nitrate reduction to ammonium in lake sediments
Adeline N. Y. Cojean, Jakob Zopfi, Alan Gerster, Claudia Frey, Fabio Lepori, and Moritz F. Lehmann
Biogeosciences, 16, 4705–4718, https://doi.org/10.5194/bg-16-4705-2019,https://doi.org/10.5194/bg-16-4705-2019, 2019
Short summary
Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
Yunhua Chang, Yan-Lin Zhang, Jiarong Li, Chongguo Tian, Linlin Song, Xiaoyao Zhai, Wenqi Zhang, Tong Huang, Yu-Chi Lin, Chao Zhu, Yunting Fang, Moritz F. Lehmann, and Jianmin Chen
Atmos. Chem. Phys., 19, 12221–12234, https://doi.org/10.5194/acp-19-12221-2019,https://doi.org/10.5194/acp-19-12221-2019, 2019
Short summary
Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019,https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Nitrogen isotope fractionation during gas-to-particle conversion of NOx to NO3− in the atmosphere – implications for isotope-based NOx source apportionment
Yunhua Chang, Yanlin Zhang, Chongguo Tian, Shichun Zhang, Xiaoyan Ma, Fang Cao, Xiaoyan Liu, Wenqi Zhang, Thomas Kuhn, and Moritz F. Lehmann
Atmos. Chem. Phys., 18, 11647–11661, https://doi.org/10.5194/acp-18-11647-2018,https://doi.org/10.5194/acp-18-11647-2018, 2018
Short summary
Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters
Lea Steinle, Johanna Maltby, Tina Treude, Annette Kock, Hermann W. Bange, Nadine Engbersen, Jakob Zopfi, Moritz F. Lehmann, and Helge Niemann
Biogeosciences, 14, 1631–1645, https://doi.org/10.5194/bg-14-1631-2017,https://doi.org/10.5194/bg-14-1631-2017, 2017
Short summary
Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study
M. Schirmer, J. Luster, N. Linde, P. Perona, E. A. D. Mitchell, D. A. Barry, J. Hollender, O. A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser
Hydrol. Earth Syst. Sci., 18, 2449–2462, https://doi.org/10.5194/hess-18-2449-2014,https://doi.org/10.5194/hess-18-2449-2014, 2014
Related subject area
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry, Jiři Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-89,https://doi.org/10.5194/bg-2019-89, 2019
Revised manuscript accepted for BG
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: A comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-47,https://doi.org/10.5194/bg-2019-47, 2019
Revised manuscript accepted for BG
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland
Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen
Biogeosciences, 15, 4447–4457, https://doi.org/10.5194/bg-15-4447-2018,https://doi.org/10.5194/bg-15-4447-2018, 2018
Short summary
In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography
Yi-Tse Weng, Chun-Chieh Wang, Cheng-Cheng Chiang, Heng Tsai, Yen-Fang Song, Shiuh-Tsuen Huang, and Biqing Liang
Biogeosciences, 15, 3133–3142, https://doi.org/10.5194/bg-15-3133-2018,https://doi.org/10.5194/bg-15-3133-2018, 2018
Short summary
Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data
Juha Mikola, Tarmo Virtanen, Maiju Linkosalmi, Emmi Vähä, Johanna Nyman, Olga Postanogova, Aleksi Räsänen, D. Johan Kotze, Tuomas Laurila, Sari Juutinen, Vladimir Kondratyev, and Mika Aurela
Biogeosciences, 15, 2781–2801, https://doi.org/10.5194/bg-15-2781-2018,https://doi.org/10.5194/bg-15-2781-2018, 2018
Short summary
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
Flux balance modeling to predict bacterial survival during pulsed-activity events
Nicholas A. Jose, Rebecca Lau, Tami L. Swenson, Niels Klitgord, Ferran Garcia-Pichel, Benjamin P. Bowen, Richard Baran, and Trent R. Northen
Biogeosciences, 15, 2219–2229, https://doi.org/10.5194/bg-15-2219-2018,https://doi.org/10.5194/bg-15-2219-2018, 2018
Short summary
Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Xiao Han, Cong Xu, Jennifer A. J. Dungait, Roland Bol, Xiaojie Wang, Wenliang Wu, and Fanqiao Meng
Biogeosciences, 15, 1933–1946, https://doi.org/10.5194/bg-15-1933-2018,https://doi.org/10.5194/bg-15-1933-2018, 2018
Short summary
Soil properties determine the elevational patterns of base cations and micronutrients in the plant–soil system up to the upper limits of trees and shrubs
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018,https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Cited articles
Baggs, E. M.: A review of stable isotope techniques for
N2O source
partitioning in soils: recent progress, remaining challenges and future
considerations, Rapid Commun. Mass Spectrom., 22, 1664–1672, https://doi.org/10.1002/rcm.3456, 2008.
Baggs, E. M.: Soil microbial sources of nitrous oxide: Recent advances in
knowledge, emerging challenges and future direction, Curr. Opin. Environ.
Sustain., 3, 321–327, https://doi.org/10.1016/j.cosust.2011.08.011, 2011.
Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., Meenken, E. D., and
Ross, J. G.: Changes in Relative Gas Diffusivity Explain Soil Nitrous Oxide
Flux Dynamics, Soil Sci. Soc. Am. J., 77, 1496–1505, https://doi.org/10.2136/sssaj2013.04.0141, 2013.
Baldwin, D. S. and Mitchell, A. M.: The effects of drying and re-flooding on
the sediment and soil nutrient dynamics of lowland river–floodplain systems:
a synthesis, Regul. Rivers Res. Manage., 16, 457–467, https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.3.CO;2-2, 2000.
Ball, B. C.: Soil structure and greenhouse gas emissions: A synthesis of 20 years
of experimentation, Eur. J. Soil Sci., 64, 357–373, https://doi.org/10.1111/ejss.12013, 2013.
Baruah, K. K., Gogoi, B., Gogoi, P., and Gupta, P. K.:
N2O emission in
relation to plant and soil properties and yield of rice varieties, Agron. Sustain.
Dev., 30, 733–742, https://doi.org/10.1051/agro/2010021, 2010.
Bateman, E. J. and Baggs, E. M.: Contributions of nitrification and denitrification
to
N2O emissions from soils at different water-filled pore space,
Biol. Fert. Soils, 41, 379–388, https://doi.org/10.1007/s00374-005-0858-3, 2005.
Beare, M. H., Gregorich, E. G., and St-Georges, P.: Compaction effects on
CO2 and
N2O production during drying and rewetting of soil,
Soil Biol. Biochem., 41, 611–621, https://doi.org/10.1016/j.soilbio.2008.12.024, 2009.
Bender, S. F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H.-R.,
Köhl, L., Giles, M., Daniell, T. J., and van der Heijden, M. G.: Symbiotic
relationships between soil fungi and plants reduce
N2O emissions from
soil, Int. Soc. Microb. Ecol. J., 8, 1336–1345, https://doi.org/10.1038/ismej.2013.224, 2014.
Blom, C. W. P. M., Bögemann, G. M., Laan, P., van der Sman, A. J. M., van de
Steeg, H. M., and Voesenek, L. A. C. J.: Adaptations to flooding in plants from
river areas, Aquat. Bot., 38, 29–47, https://doi.org/10.1016/0304-3770(90)90097-5, 1990.
Blum, J. M., Su, Q., Ma, Y., Valverde-Pérez, B., Domingo-Félez, C.,
Jensen, M. M., and Smets, B. F.: The pH dependency of N-converting enzymatic
processes, pathways and microbes: Effect on net
N2O production,
Environ. Microbiol., 20, 1623–1640, https://doi.org/10.1111/1462-2920.14063, 2018.
Böttcher, J., Weymann, D., Well, R., Von Der Heide, C., Schwen, A., Flessa,
H., and Duijnisveld, W. H. M.: Emission of groundwater-derived nitrous oxide into
the atmosphere: model simulations based on a
15N field experiment, Eur.
J. Soil Sci., 62, 216–225, https://doi.org/10.1111/j.1365-2389.2010.01311.x, 2011.
Bringel, F. and Couée, I.: Pivotal roles of phyllosphere microorganisms at
the interface between plant functioning and atmospheric trace gas dynamics,
Front. Microbiol., 6, 1–14, https://doi.org/10.3389/fmicb.2015.00486, 2015.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. Roy. Soc. Lond. B,
368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo, S., and Puigdefábregas,
J.: Aggregate stability in range sandy loam soils Relationships with runoff and
erosion, Catena, 77, 192–199, https://doi.org/10.1016/j.catena.2008.12.011, 2009.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C.,
Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles,
in: Climate Change 2013 – The Physical Science Basis, edited by: Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, 465–570, 2013.
Diba, F., Shimizu, M., and Hatano, R.: Effects of soil aggregate size, moisture
content and fertilizer management on nitrous oxide production in a volcanic ash
soil, Soil Sci. Plant Nutr., 57, 733–747, https://doi.org/10.1080/00380768.2011.604767, 2011.
Drury, C., Yang, X., Reynolds, W., and Tan, C.: Influence of crop rotation and
aggregate size on carbon dioxide production and denitrification, Soil Till. Res.,
79, 87–100, https://doi.org/10.1016/j.still.2004.03.020, 2004.
Ebrahimi, A. and Or, D.: Microbial community dynamics in soil aggregates shape
biogeochemical gas fluxes from soil profiles – upscaling an aggregate
biophysical model, Global Change Biol., 22, 3141–3156, https://doi.org/10.1111/gcb.13345, 2016.
Fender, A.-C., Leuschner, C., Schützenmeister, K., Gansert, D., and Jungkunst,
H. F.: Rhizosphere effects of tree species – Large reduction of
N2O
emission by saplings of ash, but not of beech, in temperate forest soil, Eur.
J. Soil Biol., 54, 7–15, https://doi.org/10.1016/j.ejsobi.2012.10.010, 2013.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.,
Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G.,
Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in
Radiative Forcing, in: Climate Change 2007: The Physical Science Basis, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and
New York, NY, USA, 129–234, 2007.
Frame, C. H., Lau, E., Joseph Nolan, E., Goepfert, T. J., and Lehmann, M. F.:
Acidification enhances hybrid
N2O production associated with aquatic
ammonia-oxidizing microorganisms, Front. Microbiol., 7, 1–23, https://doi.org/10.3389/fmicb.2016.02104, 2017.
Gajić, B., Đurović, N., and Dugalić, G.: Composition and stability
of soil aggregates in Fluvisols under forest, meadows, and 100 years of
conventional tillage, J. Plant Nutr. Soil Sci., 173, 502–509, https://doi.org/10.1002/jpln.200700368, 2010.
Gee, G. W. and Bauder, J. W.: Particle-size Analysis, in: Physical and
Mineralogical Methods-Agronomy Monograph no. 9, edited by: Klute, A., American
Society of Agronomy-Soil Science Society of America, Madison, WI., 383–411, 1986.
Goldberg, S. D., Knorr, K. H., Blodau, C., Lischeid, G., and Gebauer, G.: Impact
of altering the water table height of an acidic fen on
N2O and NO
fluxes and soil concentrations, Global Change Biol., 16, 220–233,
https://doi.org/10.1111/j.1365-2486.2009.02015.x, 2010.
GraphPad Software Inc.: GraphPad Prism 7.04, La Jolla, CA, available at:
https://www.graphpad.com/ (last access: 15 October 2018), 2017.
Groffman, P. M. and Tiedje, J. M.: Denitrification Hysteresis During Wetting and
Drying Cycles in Soil, Soil Sci. Soc. Am. J., 52, 1626, https://doi.org/10.2136/sssaj1988.03615995005200060022x, 1988.
Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V,
Brönnimann, S., Charabi, Y. A.-R., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai,
P.: Observations: Atmosphere and Surface, in: Climate Change 2013 – The
Physical Science Basis, edited by: Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, 159–254, 2013.
Hefting, M., Clément, J.-C., Dowrick, D., Cosandey, A. C., Bernal, S.,
Cimpian, C., Tatur, A., Burt, T. P., and Pinay, G.: Water table elevation
controls on soil nitrogen cycling in riparian wetlands along a European climatic
gradient, Biogeochemistry, 67, 113–134, https://doi.org/10.1023/B:BIOG.0000015320.69868.33, 2004.
Heincke, M. and Kaupenjohann, M.: Effects of soil solution on the dynamics of
N2O emissions: a review, Nutr. Cycl. Agroecosyst., 55, 133–157,
https://doi.org/10.1023/A:1009842011599, 1999.
Hendershot, W. H., Lalande, H., and Duquette, M.: Soil Reaction and Exchangeable
Acidity, in Soil Sampling and Methods of Analysis, edited by: Carter, M. R. and
Gregorich, E. G., CRC Press Inc, Boca Raton, FL, 173–178, 2007.
Hill, A. R.: Buried organic-rich horizons: their role as nitrogen sources in
stream riparian zones, Biogeochemistry, 104, 347–363, https://doi.org/10.1007/s10533-010-9507-5, 2011.
Hu, H.-W., Macdonald, C. A., Trivedi, P., Holmes, B., Bodrossy, L., He, J.-Z.,
and Singh, B. K.: Water addition regulates the metabolic activity of ammonia
oxidizers responding to environmental perturbations in dry subhumid ecosystems,
Environ. Microbiol., 17, 444–461, https://doi.org/10.1111/1462-2920.12481, 2015.
Jahangir, M. M. R., Roobroeck, D., Van Cleemput, O., and Boeckx, P.: Spatial
variability and biophysicochemical controls on
N2O emissions from
differently tilled arable soils, Biol. Fert. Soils, 47, 753–766, https://doi.org/10.1007/s00374-011-0580-2, 2011.
Jørgensen, C. J., Struwe, S., and Elberling, B.: Temporal trends in
N2O flux dynamics in a Danish wetland – effects of plant-mediated gas
transport of
N2O and
O2 following changes in water level
and soil mineral-N availability, Global Chang. Biol., 18, 210–222, https://doi.org/10.1111/j.1365-2486.2011.02485.x, 2012.
Khalil, K., Renault, P., and Mary, B.: Effects of transient anaerobic conditions
in the presence of acetylene on subsequent aerobic respiration and
N2O
emission by soil aggregates, Soil Biol. Biochem., 37, 1333–1342, https://doi.org/10.1016/j.soilbio.2004.11.029, 2005.
Kowalik, P. J. and Randerson, P. F.: Nitrogen and phosphorus removal by willow
stands irrigated with municipal waste water – A review of the Polish experience,
Biomass Bioenergy, 6, 133–139, https://doi.org/10.1016/0961-9534(94)90092-2, 1994.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil:
Concept & review, Soil Biol. Biochem., 83, 184–199, https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Li, X., Sørensen, P., Olesen, J. E., and Petersen, S. O.: Evidence for
denitrification as main source of
N2O emission from residue-amended
soil, Soil Biol. Biochem., 92, 153–160, https://doi.org/10.1016/j.soilbio.2015.10.008, 2016.
Loecke, T. D. and Robertson, G. P.: Soil resource heterogeneity in terms of
litter aggregation promotes nitrous oxide fluxes and slows decomposition, Soil
Biol. Biochem., 41, 228–235, https://doi.org/10.1016/j.soilbio.2008.10.017, 2009.
Luster, J., Göttlein, A., Nowack, B., and Sarret, G.: Sampling, defining,
characterising and modeling the rhizosphere – the soil science tool box, Plant
Soil, 321, 457–482, https://doi.org/10.1007/s11104-008-9781-3, 2009.
Morley, N., Baggs, E. M., Dörsch, P., and Bakken, L.: Production of NO,
N2O and
N2 by extracted soil bacteria, regulation by
and
O2 concentrations, FEMS Microbiol. Ecol., 65,
102–112, https://doi.org/10.1111/j.1574-6941.2008.00495.x, 2008.
Myrold, D. D., Pett-Ridge, J., and Bottomley, P. J.: Nitrogen Mineralization
and Assimilation at Millimeter Scales, in: Methods in Enzymology, vol. 496,
Academic Press, New York, USA, 91–114, 2011.
Neira, J., Ortiz, M., Morales, L., and Acevedo, E.: Oxygen diffusion in soils:
Understanding the factors and processes needed for modeling, Chil. J. Agric.
Res., 75, 35–44, https://doi.org/10.4067/S0718-58392015000300005, 2015.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and
implications for management, Plant Soil, 76, 319–337, https://doi.org/10.1007/BF02205590, 1984.
Parkin, T. B.: Soil Microsites as a Source of Denitrification Variability, Soil
Sci. Soc. Am. J., 51, 1194–1199, 1987.
Philippot, L., Hallin, S., Börjesson, G., and Baggs, E. M.: Biochemical
cycling in the rhizosphere having an impact on global change, Plant Soil, 321,
61–81, https://doi.org/10.1007/s11104-008-9796-9, 2009.
Rabot, E., Hénault, C., and Cousin, I.: Temporal Variability of Nitrous
Oxide Emissionsby Soils as Affected by Hydric History, Soil Sci. Soc. Am. J.,
78, 434–444, https://doi.org/10.2136/sssaj2013.07.0311, 2014.
Randerson, P. F., Moran, C., and Bialowiec, A.: Oxygen transfer capacity of
willow (Salix viminalis L.), Biomass Bioenergy, 35, 2306–2309, https://doi.org/10.1016/j.biombioe.2011.02.018, 2011.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (
N2O):
The Dominant Ozone-Depleting Substance Emitted in the 21
st Century,
Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
R Core Team: R: A Language and Environment for Statistical Computing, R Found.
Stat. Comput., Vienna, available at:
https://www.R-project.org/, last
access: 15 October 2018.
Renault, P. and Stengel, P.: Modeling Oxygen Diffusion in Aggregated Soils:
I. Anaerobiosis inside the Aggregates, Soil Sci. Soc. Am. J., 58, 1017,
https://doi.org/10.2136/sssaj1994.03615995005800040004x, 1994.
Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., and Munch, J. C.:
Emission of
N2O,
N2 and C
O2 from soil fertilized
with nitrate: Effect of compaction, soil moisture and rewetting, Soil Biol.
Biochem., 38, 263–274, https://doi.org/10.1016/j.soilbio.2005.05.005, 2006.
Samaritani, E., Shrestha, J., Fournier, B., Frossard, E., Gillet, F., Guenat,
C., Niklaus, P. A., Pasquale, N., Tockner, K., Mitchell, E. A. D., and Luster,
J.: Heterogeneity of soil carbon pools and fluxes in a channelized and a
restored floodplain section (Thur River, Switzerland), Hydrol. Earth Syst. Sci.,
15, 1757–1769, https://doi.org/10.5194/hess-15-1757-2011, 2011.
Sey, B. K., Manceur, A. M., Whalen, J. K., Gregorich, E. G., and Rochette, P.:
Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production
from aggregates of a cultivated sandy-loam soil, Soil Biol. Biochem., 40,
2468–2473, https://doi.org/10.1016/j.soilbio.2008.05.012, 2008.
Shrestha, J., Niklaus, P. a, Frossard, E., Samaritani, E., Huber, B., Barnard,
R. L., Schleppi, P., Tockner, K., and Luster, J.: Soil nitrogen dynamics in a
river floodplain mosaic, J. Environ. Qual., 41, 2033–2045, https://doi.org/10.2134/jeq2012.0059, 2012.
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.: Soil Structure and
Organic Matter, Soil Sci. Soc. Am. J., 64, 681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the
link between (micro)aggregates, soil biota, and soil organic matter dynamics,
Soil Till. Res., 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004.
Smart, D. R. and Bloom, A. J.: Wheat leaves emit nitrous oxide during nitrate
assimilation, P. Natl. Acad. Sci. USA, 98, 7875–7878, https://doi.org/10.1073/pnas.131572798, 2001.
Spott, O., Russow, R., and Stange, C. F.: Formation of hybrid
N2O and
hybrid
N2 due to codenitrification: First review of a barely considered
process of microbially mediated N-nitrosation, Soil Biol. Biochem., 43, 1995–2011,
https://doi.org/10.1016/j.soilbio.2011.06.014, 2011.
Stolk, P. C., Hendriks, R. F. A., Jacobs, C. M. J., Moors, E. J., and Kabat, P.:
Modelling the effect of aggregates on
N2O emission from denitrification
in an agricultural peat soil, Biogeosciences, 8, 2649–2663, https://doi.org/10.5194/bg-8-2649-2011, 2011.
Thorbjørn, A., Moldrup, P., Blendstrup, H., Komatsu, T., and Rolston, D. E.:
A Gas Diffusivity Model Based on Air-, Solid-, and Water-Phase Resistance in
Variably Saturated Soil, Vadose Zone J., 7, 1276, https://doi.org/10.2136/vzj2008.0023, 2008.
Tisdall, J. M. and Oades, J. M.: Organic matter and water-stable aggregates in
soils, J. Soil Sci., 33, 141–163, https://doi.org/10.1111/j.1365-2389.1982.tb01755.x, 1982.
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E.,
Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., and
Kögel-Knabner, I.: Microaggregates in soils, J. Plant Nutr. Soil Sci., 181,
104–136, https://doi.org/10.1002/jpln.201600451, 2017.
Vieten, B., Conen, F., Neftel, A., and Alewell, C.: Respiration of nitrous oxide
in suboxic soil, Eur. J. Soil Sci., 60, 332–337, https://doi.org/10.1111/j.1365-2389.2009.01125.x, 2009.
Walthert, L., Graf, U., Kammer, A., Luster, J., Pezzotta, D., Zimmermann, S.,
and Hagedorn, F.: Determination of organic and inorganic carbon,
δ13C,
and nitrogen in soils containing carbonates after acid fumigation with HCl, J.
Plant Nutr. Soil Sci., 173, 207–216, https://doi.org/10.1002/jpln.200900158, 2010.
Young, I. and Ritz, K.: Tillage, habitat space and function of soil microbes,
Soil Till. Res., 53, 201–213, https://doi.org/10.1016/S0167-1987(99)00106-3, 2000.
Zhu, X., Burger, M., Doane, T., and Horwath, W. R.: Ammonia oxidation pathways
and nitrifier denitrification are significant sources of
N2O and NO
under low oxygen availability, P. Natl. Acad. Sci. USA, 110, 6328–6333,
https://doi.org/10.1073/pnas.1219993110, 2013.