Use independent tracers to validate chronology

Check if depth distribution of other elements is homogeneous with depth.
Analyze short-lived radionuclides at the SML.
Check for burrowing evidence → e.g. X-ray radiographs or visual description of sed. core.
CRS or CF:CS model below SML → check residence time of 210Pb in SML.
The profile is likely undatable if entirely affected by mixing.

Check if changes in grain size distribution, DBD and OM content also occur.
Normalize radionuclide concentrations to the parameter driving 210Pb distribution.
Analyze 226Ra in all sections.
CF:CS model in normalized profiles.
The profile is likely undatable if normalization fails and other chronological tools are unavailable.

Compare 210Pb$_{xs}$ inventories with those at a reference site.
Check for coarser grain size.
Presence of short-lived radionuclides at reference site to check entire core recovery.
CF:CS or CIC models to estimate mean MAR.

Only if OM is high (> 30 %) and mostly labile (0.01–0.03 d$^{-1}$)

Analyze radionuclides in the fine sediment fraction (sieve to <63 µm or <125 µm) → check new profile
226Ra by gamma spectroscopy
Check for records of event sedimentation
If sieving increases 210Pb$_{xs}$ concentrations but its shape is similar, the profile is undatable and cannot be used for accumulation rate calculations.