Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
BG | Volume 15, issue 21
Biogeosciences, 15, 6637–6648, 2018
https://doi.org/10.5194/bg-15-6637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 6637–6648, 2018
https://doi.org/10.5194/bg-15-6637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Nov 2018

Research article | 08 Nov 2018

Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: importance of source and permafrost degradation

Yinghui Wang et al.

Related authors

Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020,https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020,https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Global soil–climate–biome diagram: linking surface soil properties to climate and biota
Xia Zhao, Yuanhe Yang, Haihua Shen, Xiaoqing Geng, and Jingyun Fang
Biogeosciences, 16, 2857–2871, https://doi.org/10.5194/bg-16-2857-2019,https://doi.org/10.5194/bg-16-2857-2019, 2019
Short summary
No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s
Shangshi Liu, Yuanhe Yang, Haihua Shen, Huifeng Hu, Xia Zhao, He Li, Taoyu Liu, and Jingyun Fang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-473,https://doi.org/10.5194/bg-2016-473, 2017
Preprint retracted
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016,https://doi.org/10.5194/bg-13-5883-2016, 2016

Related subject area

Biogeochemistry: Organic Biogeochemistry
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020,https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020,https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Sterol preservation in hypersaline microbial mats
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020,https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020,https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019,https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary

Cited articles

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, 2015. 
Aiken, G. R., Spencer, R. G. M., Striegl, R. G., Schuster, P. F., and Raymond, P. A.: Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin, Global Biogeochem. Cy., 28, 525–537, 2014. 
Bockheim, J. G. and Munroe, J. S.: Organic carbon pools and genesis of alpine soils with permafrost: a review, Arct. Antarct. Alp. Res., 46, 987–1006, 2014. 
Broek, T. A. B., Walker, B. D., Guilderson, T. P., and McCarthy, M. D.: Coupled ultrafiltration and solid phase extraction approach for the targeted study of semi-labile high molecular weight and refractory low molecular weight dissolved organic matter, Mar. Chem., 194, 146–157, 2017. 
Corilo, Y. E.: EnviroOrg, Florida State University, 2015. 
Publications Copernicus
Download
Short summary
With global warming, thawing of permafrost releases dissolved organic matter (DOM) into streams. By analyzing DOM along an alpine stream on the Qinghai–Tibet Plateau, we found DOM was mainly from the active layer, but with deepening of the active layer, the contribution of the deep permafrost layer increased, causing a change in the chemical composition of DOM. From the head- to downstream, DOM is undergoing rapid degradation, but some components are persistent and can be transported downstream.
With global warming, thawing of permafrost releases dissolved organic matter (DOM) into streams....
Citation