Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 21 | Copyright

Special issue: Interactions between planktonic organisms and biogeochemical...

Biogeosciences, 15, 6573-6589, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Nov 2018

Research article | 07 Nov 2018

Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model

Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin Audrey Gimenez et al.
  • Aix Marseille Univ., CNRS, Université de Toulon, IRD, OSU Pythéas, Mediterranean Institute of Oceanography (MIO), UM 110, 13288, Marseille, France

Abstract. The Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise took place in the western tropical South Pacific (WTSP) during the austral summer (March–April 2015). The aim of the OUTPACE project was to investigate a longitudinal gradient of biological and biogeochemical features in the WTSP, and especially the role of N2 fixation in the C, N, and P cycles. Two contrasted regions were considered in this study: the Western Melanesian Archipelago (WMA), characterized by high N2 fixation rates, significant surface production and low dissolved inorganic phosphorus (DIP) concentrations, and the South Pacific Gyre (WGY), characterized by very low N2 fixation rates, surface production and high DIP concentrations. Since physical forcings and mixed layer dynamics in both regions were similar, it was considered that the gradient of oligotrophy observed in situ between the WMA and WGY was not explained by differences in physical processes, but rather by differences in biogeochemical processes. A one-dimensional physical–biogeochemical coupled model was used to investigate the role of N2 fixation in the WTSP by running two identical simulations, only differing by the presence (simWMA) or absence (simWGY) of diazotrophs. We showed that the nitracline and the phosphacline had to be, respectively, deeper and shallower than the mixed layer depth (MLD) to bring N-depleted and P-repleted waters to the surface during winter mixing, thereby creating favorable conditions for the development of diazotrophs. We also concluded that a preferential regeneration of the detrital phosphorus (P) matter was necessary to obtain this gap between the nitracline and phosphacline depths, as the nutricline depths significantly depend on the regeneration of organic matter in the water column. Moreover, the model enabled us to highlight the presence of seasonal variations in primary production and P availability in the upper surface waters in simWMA, where diazotrophs provided a new source of nitrogen (N) to the ecosystem, whereas no seasonal variations were obtained in simWGY, in the absence of diazotrophs. These main results emphasized the fact that surface production dynamics in the WTSP is based on a complex and sensitive system which depends on the one hand on physical processes (vertical mixing, sinking of detrital particles), and on the other hand on biogeochemical processes (N2 fixation, remineralization).

Publications Copernicus
Special issue
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the...