Articles | Volume 15, issue 20
https://doi.org/10.5194/bg-15-6329-2018
https://doi.org/10.5194/bg-15-6329-2018
Research article
 | 
26 Oct 2018
Research article |  | 26 Oct 2018

Vivianite formation in methane-rich deep-sea sediments from the South China Sea

Jiarui Liu, Gareth Izon, Jiasheng Wang, Gilad Antler, Zhou Wang, Jie Zhao, and Matthias Egger

Related authors

Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018,https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary

Related subject area

Biogeochemistry: Sediment
Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023,https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: a prelude to implications for their interpretation as bioindicators or paleoproxies
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-169,https://doi.org/10.5194/bg-2023-169, 2023
Revised manuscript accepted for BG
Short summary
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023,https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022,https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022,https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary

Cited articles

Algeo, T. J. and Ingall, E.: Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeocl., 256, 130–155, https://doi.org/10.1016/j.palaeo.2007.02.029, 2007. 
Amonette, J. E. and Templeton, J. C.: Improvements to the quantitative assay of nonrefractory minerals for Fe (II) and total Fe using 1, 10-phenanthroline, Clays Clay Miner., 46, 51–62, https://doi.org/10.1346/CCMN.1998.0460106, 1998. 
Amos, R., Bekins, B., Cozzarelli, I., Voytek, M., Kirshtein, J., Jones, E., and Blowes, D.: Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer, Geobiology, 10, 506–517, https://doi.org/10.1111/j.1472-4669.2012.00341.x, 2012. 
Bar-Or, I., Elvert, M., Eckert, W., Kushmaro, A., Vigderovich, H., Zhu, Q., Ben-Dov, E., and Sivan, O.: Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals, Environ. Sci. Technol., 51, 12293–12301, https://doi.org/10.1021/acs.est.7b03126, 2017. 
Beal, E. J., House, C. H., and Orphan, V. J.: Manganese-and iron-dependent marine methane oxidation, Science, 325, 184–187, https://doi.org/10.1126/science.1169984, 2009. 
Download
Short summary
Our work provides new insights into the biogeochemical cycling of iron, methane and phosphorus. We found that vivianite, an iron-phosphate mineral, is pervasive in methane-rich sediments, suggesting that iron reduction at depth is coupled to phosphorus and methane cycling on a much greater spatial scale than previously assumed. Acting as an important burial mechanism for iron and phosphorus, vivianite authigenesis may be an under-considered process in both modern and ancient settings alike.
Altmetrics
Final-revised paper
Preprint