Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 2
Biogeosciences, 15, 491–505, 2018
https://doi.org/10.5194/bg-15-491-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Biological soil crusts and their role in biogeochemical processes...

Biogeosciences, 15, 491–505, 2018
https://doi.org/10.5194/bg-15-491-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Jan 2018

Research article | 26 Jan 2018

Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia

Burkhard Büdel1, Wendy J. Williams2, and Hans Reichenberger1 Burkhard Büdel et al.
  • 1Plant Ecology and Systematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
  • 2Arid Soil Ecosystems, Agriculture and Food Sciences, University of Queensland, Gatton, 4343, Australia

Abstract. Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m−2 yr−1, corresponding to an annual carbon gain of 2.75 g m−2 yr−1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m−2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m−2 yr−1, equivalent to a carbon gain of 1.7 g m−2 yr−1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m−2 s−1 photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.

Publications Copernicus
Download
Short summary
We report on the net primary productivity of a biological soil crust from the Boodjamulla NP, Queensland. Metabolic activity lasted from September 2010 to mid-April 2011, referring to 23.6 % of the total time of the year. The first months of activity had a respiratory loss of CO2. Of the metabolic active period, 48.6 % were photosynthesis and 51.4 % dark respiration. Carbon gain was 1.72 g m−2 yr−1. The gas exchange pattern was divided into metabolically inactive winter and active summer month.
We report on the net primary productivity of a biological soil crust from the Boodjamulla NP,...
Citation