Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 13
Biogeosciences, 15, 4245–4269, 2018
https://doi.org/10.5194/bg-15-4245-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 4245–4269, 2018
https://doi.org/10.5194/bg-15-4245-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Jul 2018

Research article | 13 Jul 2018

Large but decreasing effect of ozone on the European carbon sink

Rebecca J. Oliver1, Lina M. Mercado1,2, Stephen Sitch2, David Simpson3,4, Belinda E. Medlyn5, Yan-Shih Lin5, and Gerd A. Folberth6 Rebecca J. Oliver et al.
  • 1Centre for Ecology and Hydrology, Benson Lane, Wallingford, OX10 8BB, UK
  • 2College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, Exeter, UK
  • 3EMEP MSC-W Norwegian Meteorological Institute, PB 43, NO-0313, Oslo, Norway
  • 4Dept. Space, Earth & Environment, Chalmers University of Technology, Gothenburg, SE-41296 Sweden
  • 5Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751 Australia
  • 6Met Office Hadley Centre, Exeter, UK

Abstract. The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.

Publications Copernicus
Download
Short summary
Potential gains in terrestrial carbon sequestration over Europe from elevated CO2 can be partially offset by concurrent rises in tropospheric O3. The land surface model JULES was run in a factorial suite of experiments showing that by 2050 simulated GPP was reduced by 4 to 9 % due to plant O3 damage. Large regional variations exist with larger impacts identified for temperate compared to boreal regions. Plant O3 damage was greatest over the twentieth century and declined into the future.
Potential gains in terrestrial carbon sequestration over Europe from elevated CO2 can be...
Citation