Research article
05 Jul 2018
Research article | 05 Jul 2018
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Sami A. Jokinen et al.
Related authors
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Elizabeth Atar, Christian März, Andrew Aplin, Olaf Dellwig, Liam Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-172,https://doi.org/10.5194/cp-2018-172, 2019
Manuscript under review for CP
Short summary
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315-1330, https://doi.org/10.5194/cp-14-1315-2018,https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243-1271, https://doi.org/10.5194/bg-15-1243-2018,https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Middle to Late Holocene mobilization of DOC-bound Pb and Y in the Magellanic moorlands (53° S) as a function of sea spray fertilization, climate variations and volcanic fallout? A preliminary report
Björn Klaes, Rolf Kilian, Gerhard Wörner, Sören Thiele-Bruhn, and Helge W. Arz
E&G Quaternary Sci. J., 67, 1-6, https://doi.org/10.5194/egqsj-67-1-2018,https://doi.org/10.5194/egqsj-67-1-2018, 2018
Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817-826, https://doi.org/10.5194/esd-8-817-2017,https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333-5355, https://doi.org/10.5194/bg-13-5333-2016,https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215-2236, https://doi.org/10.5194/cp-10-2215-2014,https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Orbital- and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939-954, https://doi.org/10.5194/cp-10-939-2014,https://doi.org/10.5194/cp-10-939-2014, 2014
Related subject area
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33-56, https://doi.org/10.5194/bg-16-33-2019,https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909-5928, https://doi.org/10.5194/bg-15-5909-2018,https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607-5632, https://doi.org/10.5194/bg-14-5607-2017,https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133-2149, https://doi.org/10.5194/bg-14-2133-2017,https://doi.org/10.5194/bg-14-2133-2017, 2017
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721-1737, https://doi.org/10.5194/bg-14-1721-2017,https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885-900, https://doi.org/10.5194/bg-14-885-2017,https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965-5981, https://doi.org/10.5194/bg-13-5965-2016,https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823-4841, https://doi.org/10.5194/bg-13-4823-2016,https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205-4218, https://doi.org/10.5194/bg-13-4205-2016,https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859-2872, https://doi.org/10.5194/bg-13-2859-2016,https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781-4807, https://doi.org/10.5194/bg-12-4781-2015,https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169-1189, https://doi.org/10.5194/bg-12-1169-2015,https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721-2739, https://doi.org/10.5194/bg-11-2721-2014,https://doi.org/10.5194/bg-11-2721-2014, 2014
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347-7359, https://doi.org/10.5194/bg-10-7347-2013,https://doi.org/10.5194/bg-10-7347-2013, 2013
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391-5406, https://doi.org/10.5194/bg-9-5391-2012,https://doi.org/10.5194/bg-9-5391-2012, 2012
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063-3081, https://doi.org/10.5194/bg-9-3063-2012,https://doi.org/10.5194/bg-9-3063-2012, 2012
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309-315, https://doi.org/10.5194/bg-9-309-2012,https://doi.org/10.5194/bg-9-309-2012, 2012
First discovery of dolomite and magnesite in living coralline algae and its geobiological implications
M. C. Nash, U. Troitzsch, B. N. Opdyke, J. M. Trafford, B. D. Russell, and D. I. Kline
Biogeosciences, 8, 3331-3340, https://doi.org/10.5194/bg-8-3331-2011,https://doi.org/10.5194/bg-8-3331-2011, 2011
Assessment of sea surface temperature changes in the Gulf of Cadiz during the last 30 ka: implications for glacial changes in the regional hydrography
A. Penaud, F. Eynaud, A. Voelker, M. Kageyama, F. Marret, J. L. Turon, D. Blamart, T. Mulder, and L. Rossignol
Biogeosciences, 8, 2295-2316, https://doi.org/10.5194/bg-8-2295-2011,https://doi.org/10.5194/bg-8-2295-2011, 2011
Productivity patterns and N-fixation associated with Pliocene-Holocene sapropels: paleoceanographic and paleoecological significance
D. Gallego-Torres, F. Martinez-Ruiz, P. A. Meyers, A. Paytan, F. J. Jimenez-Espejo, and M. Ortega-Huertas
Biogeosciences, 8, 415-431, https://doi.org/10.5194/bg-8-415-2011,https://doi.org/10.5194/bg-8-415-2011, 2011
Twentieth century δ13C variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea
B. Williams, J. Halfar, R. S. Steneck, U. G. Wortmann, S. Hetzinger, W. Adey, P. Lebednik, and M. Joachimski
Biogeosciences, 8, 165-174, https://doi.org/10.5194/bg-8-165-2011,https://doi.org/10.5194/bg-8-165-2011, 2011
The enigmatic ichnofossil Tisoa siphonalis and widespread authigenic seep carbonate formation during the Late Pliensbachian in southern France
B. van de Schootbrugge, D. Harazim, K. Sorichter, W. Oschmann, J. Fiebig, W. Püttmann, M. Peinl, F. Zanella, B. M. A. Teichert, J. Hoffmann, A. Stadnitskaia, and Y. Rosenthal
Biogeosciences, 7, 3123-3138, https://doi.org/10.5194/bg-7-3123-2010,https://doi.org/10.5194/bg-7-3123-2010, 2010
Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida
D. Munsel, U. Kramar, D. Dissard, G. Nehrke, Z. Berner, J. Bijma, G.-J. Reichart, and T. Neumann
Biogeosciences, 7, 2339-2350, https://doi.org/10.5194/bg-7-2339-2010,https://doi.org/10.5194/bg-7-2339-2010, 2010
Historical records of coastal eutrophication-induced hypoxia
A. J. Gooday, F. Jorissen, L. A. Levin, J. J. Middelburg, S. W. A. Naqvi, N. N. Rabalais, M. Scranton, and J. Zhang
Biogeosciences, 6, 1707-1745, https://doi.org/10.5194/bg-6-1707-2009,https://doi.org/10.5194/bg-6-1707-2009, 2009
Cited articles
Adelson, J. M., Helz, G. R., and Miller, C. V.: Reconstructing the rise of
recent coastal anoxia; molybdenum in Chesapeake Bay sediments, Geochim.
Cosmochim. Ac., 65, 237–252, https://doi.org/10.1016/S0016-7037(00)00539-1, 2001.
Algeo, T. J. and Lyons, T. W.: Mo–total organic carbon covariation in modern
anoxic marine environments: Implications for analysis of paleoredox and
paleohydrographic conditions, Paleoceanography, 21, PA1016,
https://doi.org/10.1029/2004PA001112, 2006.
Algeo, T. J. and Rowe, H.: Paleoceanographic applications of trace-metal
concentration data, Chem. Geol., 324, 6–18,
https://doi.org/10.1016/j.chemgeo.2011.09.002, 2012.
Almroth-Rosell, E., Edman, M., Eilola, K., Meier, H. E. M., and Sahlberg, J.:
Modelling nutrient retention in the coastal zone of an eutrophic sea,
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016,
2016.
Altabet, M. A. and Francois, R.: Sedimentary nitrogen isotopic ratio as
recorder for surface ocean nitrate utilization, Global Biogeochem. Cy., 8,
103–116, https://doi.org/10.1029/93GB03396, 1994.
Altabet, M. A., Deuser, W. G., Honjo, S., and Stienen, C.: Seasonal and
depth-related changes in the source of sinking particles in the North
Atlantic, Nature, 354, 136–139, https://doi.org/10.1038/354136a0, 1991.
Aravena, R., Evans, M. L., and Cherry, J. A.: Stable isotopes of oxygen and
nitrogen in source identification of nitrate from septic systems, Ground
Water, 31, 180–186, https://doi.org/10.1111/j.1745-6584.1993.tb01809.x, 1993.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and
Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal
in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238, https://doi.org/10.1002/lno.10644,
2017.
Bedrock of Finland – DigiKP: Digital Map Database (Electronic source),
Geological Survey of Finland, available at:
http://gtkdata.gtk.fi/Kalliopera/index.html, last access: 8 June 2017.
Behl, R. J. and Kennett, J. P.: Brief interstadial events in the Santa
Barbara basin, NE Pacific, during the past 60 kyr, Nature, 379, 243–246,
https://doi.org/10.1038/379243a0, 1996.
Bonsdorff, E., Blomqvist, E. M., Mattila, J., and Norkko, A.: Coastal
eutrophication: causes, consequences and perspectives in the archipelago
areas of the northern Baltic Sea, Estuar. Coast. Shelf S., 44 (Suppl. A),
63–72, https://doi.org/10.1016/S0272-7714(97)80008-X, 1997a.
Bonsdorff, E., Blomqvist, E. M., Mattila, J., and Norkko, A.: Long-term
changes and coastal eutrophication. Examples from the Åland Island and
the Archipelago Sea, northern Baltic Sea, Oceanol. Acta, 20, 319–329, 1997b.
Brännvall, M.-L., Bindler, R., and Renberg, I.: The medieval industry was
the cradle of modern large-scale atmospheric lead pollution northern Europe,
Environ. Sci. Technol., 33, 4391–4395, https://doi.org/10.1021/es990279n, 1999.
Brassel, S. C., Wardroper, A. M. K., Thomson, I. D., Maxwell, J. R., and
Eglinton, G.: Specific acyclic isoprenoids as biological markers of
methanogenic bacteria in marine sediments, Nature, 290, 693–696,
https://doi.org/10.1038/290693a0, 1981.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Caballero-Alfonso, A. M., Carstensen, J., and Conley, D. J.: Biogeochemical
and environmental drivers of coastal hypoxia, J. Marine Syst., 141, 190–199,
https://doi.org/10.1016/j.jmarsys.2014.04.008, 2015.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P. Natl. Acad. Sci.
USA, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014a.
Carstensen, J., Conley, D. J., Bonsdorff, E., Gustafsson, B. G., Hietanen,
S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D. C.,
Slomp, C. P., Timmermann, K., and Voss, M.: Hypoxia in the Baltic Sea:
biogeochemical cycles, benthic fauna, and management, Ambio, 43, 26–36,
https://doi.org/10.1007/s13280-013-0474-7, 2014b.
Cole, M. L., Valiela, I., Kroeger, K. D., Tomasky, G. L., Cebrian, J.,
Wigand, C., McKinney, R. A., Grady, S. P., and Carvalho da Silva, M. H.:
Assesment of a
δ15N isotopic method to indicate anthropogenic
eutrophication in aquatic ecosystems, J. Environ. Qual., 33, 124–132,
https://doi.org/10.2134/jeq2004.1240, 2004.
Conley, D. J., Humborg, C., Rahm, L., Savchuk, O.P., and Wulff, F.: Hypoxia
in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry,
Environ. Sci. Technol., 36, 5315–5320, https://doi.org/10.1021/es025763w, 2002.
Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G.,
Gustafsson, B. G., Hietanen, S., Kortetaas, M., Kuosa, J., Meier, H. E. M.,
Müller-Karulis, B., Nordberg, K., Norkko, A., Nurnberg, G., Pitkänen,
H., Rabalais, N. N., Rosenberg, R., Savchuck, O. P., Slomp, C. P., Voss, M.,
Wulff, F., and Zillén L.: Hypoxia-related processes in the Baltic Sea,
Environ. Sci. Technol., 43, 3412–3420, https://doi.org/10.1021/es802762a, 2009a.
Conley, D. J., Carstensen, J., Vaquer-Sunyer, R., and Duarte, C. M.:
Ecosystem thresholds with hypoxia, Hydrobiologia, 629, 21–29,
https://doi.org/10.1007/978-90-481-3385-7_3, 2009b.
Conley, D. J., Carstensen, J., Aigars, J., Are, P., Bonsdorff, E., Eremina,
T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C.,
Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E.,
Remekaite-Nikiene, N., Walve, J., Wilhelms, S., and Zillén, L.: Hypoxia
increasing in the coastal zone of the Baltic Sea, Environ. Sci. Technol., 45,
6777–6783, https://doi.org/10.1021/es201212r, 2011.
Dahl, T. W., Chappaz, A., Fitts, J. P., and Lyons, T. W.: Molybdenum
reduction in a sulfidic lake: Evidence from X-ray absorption fine-structure
spectroscopy and implications for the Mo paleoproxy, Geochim. Coscmochim.
Ac., 103, 213–231, https://doi.org/10.1016/j.gca.2012.10.058, 2013.
Dahl, T. W., Chappaz, A., Hoek, J., McKenzie, C. J., Svane, S., and Canfield,
D. E.: Evidence of molybdenum association with particulate organic matter
under sulfidic conditions, Geobiology, 15, 311–323, https://doi.org/10.1111/gbi.12220,
2017.
De La Rocha, C., Nowald, N., and Passow, U.: Interactions between diatom
aggregates, minerals particulate organic carbon, and dissolved organic
matter: Further implications for the ballast hypothesis, Global Biogeochem.
Cy., 22, GB4005, https://doi.org/10.1029/2007GB003156, 2008.
Dellwig O., Hinrichs J., Hild A., and Brumsack H. J.: Changing sedimentation
in tidal flat sediments of the southern North Sea from the Holocene to the
present: a geochemical approach, J. Sea Res., 44, 195–208.
https://doi.org/10.1016/S1385-1101(00)00051-4, 2000.
Diaz, R. J. and Rosenberg, R.: Marine benthic hypoxia: a review of its
ecological effects and the behavioural responses of benthic macrofauna,
Oceanogr. Mar. Biol., 33, 245–303, 1995.
Diaz, R. J. and Rosenberg, R.: Spreading of dead zones and consequences for
marine ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., and Eglinton, G.: Organic
geochemical indicators of palaeoenvironmental conditions of sedimentation,
Nature, 272, 216–222, https://doi.org/10.1038/272216a0, 1978.
Dijkstra, N., Slomp, C. P., Behrends, T., and Expedition 347 Scientists:
Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an
intermittently anoxic deep basin in the Baltic Sea, Chem. Geol., 438, 58–72,
https://doi.org/10.1016/j.chemgeo.2016.05.025, 2016.
Duan, Y.: Organic geochemistry of recent marine sediments from the Nansha
Sea, China. Org. Geochem., 31, 159–167, https://doi.org/10.1016/S0146-6380(99)00135-7,
2000.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.: Vivianite
is a major sink for phosphorus in methanogenic coastal surface sediments,
Geochim. Coscmochim. Ac., 169, 217–235, https://doi.org/10.1016/j.gca.2015.09.012, 2015.
Ekholm, P., Rankinen, K., Rita, H., Räike, A., Sjöblom, H.,
Raateland, A., Vesikko, L., Bernal, J. E. C., and Taskinen, A.: Phosphorus
and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006,
Environ. Monit. Assess., 187, 216, https://doi.org/10.1007/s10661-015-4417-6, 2015.
Erickson, B. E. and Helz, G. R.: Molybdenum (VI) speciation in sulfidic
waters: Stability and lability of thiomolybdates, Geochim. Coscmochim. Ac.,
64, 1149–1158, https://doi.org/10.1016/S0016-7037(99)00423-8, 2000.
Fogel, M. L., Cifuentes, L. A., Velinsky, D. J., and Sharp, J. H.:
Relationship of carbon availability in estuarine phytoplankton to isotopic
composition, Mar. Ecol. Prog. Ser., 82, 291–300, 1992.
Freudenthal, T., Wagner, T., Wenzhöfer, F., Zabel, M., and Wefer, G.:
Early diagenesis of organic matter from sediments of the eastern subtropical
Atlantic: Evidence from stable nitrogen and carbon isotopes, Geochim.
Coscmochim. Ac., 65, 1795–1808, https://doi.org/10.1016/S0016-7037(01)00554-3, 2001.
Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and
Slomp, C. P.: Hypoxia sustains cyanobacteria blooms in the Baltic Sea,
Environ. Sci. Technol., 48, 2598–2602, https://doi.org/10.1021/es404395a, 2014.
Gälman, V., Rydberg, J., Sjöstedt de-Luna, S., Bindler, R., and
Renberg, I.: Carbon and nitrogen loss rates during aging of lake sediment:
changes over 27 years studied in varved lake sediment, Limnol. Oceanogr., 53,
1076–1082, https://doi.org/10.4319/lo.2008.53.3.1076, 2008.
Goñi, M., Teixeira, M., and Perkey, D.: Sources and distribution of
organic matter in a river-dominated estuary (Winyah Bay, SC, USA), Estuar.
Coast. Shelf S., 57, 1023–1048, https://doi.org/10.1016/S0272-7714(03)00008-8, 2003.
Gooday, A. J., Jorissen, F., Levin, L. A., Middelburg, J. J., Naqvi, S. W.
A., Rabalais, N. N., Scranton, M., and Zhang, J.: Historical records of
coastal eutrophication-induced hypoxia, Biogeosciences, 6, 1707–1745,
https://doi.org/10.5194/bg-6-1707-2009, 2009.
Goslar, T., Czernik, J., and Goslar, E.: Low-energy 14C AMS in Poznań
Radiocarbon Laboratory, Poland. Nucl. Instrum. Meth. B., 223–224, 5–11,
https://doi.org/10.1016/j.nimb.2004.04.005, 2004.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the development of Baltic Sea eutrophication
1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
Hänninen, J., Vuorinen, I., Helminen, H., Kirkkala, T., and Lehtilä,
K.: Trends and gradients in nutrient concentrations and loading in the
Archipelago Sea, Northern Baltic, in 1970–1997, Estuar. Coast. Shelf S., 50,
153–171, https://doi.org/10.1006/ecss.1999.0568, 2000.
Hardisty, D. S., Riedinger, N., Planavsky, N. J., Asael, D., Andrén, T.,
Jørgensen, B. B., and Lyons, T. W.: A Holocene history of dynamic water
column redox conditions in the
Landsort Deep, Baltic Sea. Am. J. Sci., 316,
713–745, https://doi.org/10.2475/08.2016.01, 2016.
Hayes, J. M.: Factors controlling
13C contents of sedimentary
organic compounds: Principles and evidence, Mar. Geol., 113, 111–125,
https://doi.org/10.1016/0025-3227(93)90153-M, 1993.
Heaton, T. H. E.: Isotopic studies of nitrogen pollution in the hydrosphere
and atmosphere: A review, Chem. Geol., 59, 87–102,
https://doi.org/10.1016/0168-9622(86)90059-X, 1986.
Heinrichs, H., Brumsack, H.-J., Lotfield, N., and König, N.: Verbessertes
Druckaufschlußsystem für biologische und anorganische Materialien, Z.
Pflanzenernähr. Bodenkd., 149, 350–353, https://doi.org/10.1002/jpln.19861490313,
1986 (in German).
Helama, S., Meriläinen, J., and Tuomenvirta, H.: Multicentennial
megadrought in northern Europe coincided with a global El Niño-Southern
Oscillation drought pattern during Medieval Climate Anomaly, Geology, 37,
175–178, https://doi.org/10.1130/G25329A.1, 2009.
Helama, S., Vartiainen, M., Holopainen, J., Mäkelä, H. M.,
Kolström, T., and Meriläinen, J.: A paleotemperature record for the
Finnish Lakeland based on microdensitometric variations in tree rings,
Geochronometria, 41, 265–277, https://doi.org/10.2478/s13386-013-0163-0, 2014.
Helz, G. R. and Adelson, J. M.: Trace element profiles in sediments as
proxies of dead zone history; rhenium compared to molybdenum, Environ. Sci.
Technol., 47, 1257–1264, https://doi.org/10.1021/es303138d, 2013.
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Patrick,
R. A. D., Garner, D. D., and Vaughan, D. J.: Mechanism of molybdenum removal
from the sea and its concentration in black shales: EXAFS evidence, Geochim.
Coscmochim. Ac., 60, 3631–3642, https://doi.org/10.1016/0016-7037(96)00195-0, 1996.
Helz, G. R., Bura-Nakić, E., Mikac, N., and Ciglenečki, I.: New model
for molybdenum behavior in euxinic waters, Chem. Geol., 284, 323–332,
https://doi.org/10.1016/j.chemgeo.2011.03.012, 2011.
HERTTA database: The environmental and geographical information service,
Finland's Environmental Administration,
http://www.syke.fi/fi-FI/Avoin_tieto/Ymparistotietojarjestelmat, last
access: 22 August 2017.
Hjulström, E.: Transportation of detritus by moving water, in: Recent
marine sediments, edited by: Trask, P. P., Dover, New York, 5–31, 1939.
Hoffmann, A. F., Soetaert, K., Middelburg, J. J., and Meysman, F. J. R.:
AquaEnv: an aquatic acid–base modelling environment in R, Aquat. Geochem.,
16, 507–546, https://doi.org/10.1007/s10498-009-9084-1, 2010.
Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids, Earth
Planet. Sc. Lett., 24, 107–116, https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hordoir, R., Höglund, A., Pemberton, P., and Schimanke, S.: Sensitivity
of the overturning circulation of the Baltic Sea to climate change, a
numerical experiment, Clim. Dynam., 50, 1425–1437,
https://doi.org/10.1007/s00382-017-3695-9, 2017.
Jenny, J-P., Francus, P., Normandeau, A., Lapointe, F., Perga, M.-E., Ojala,
A. E. K., Schimmelmann, A., and Zolitschka, B.: Global spread of hypoxia in
freshwater ecosystems during the last three centuries is caused by rising
local human pressure, Glob. Change Biol., 22, 1481–1489,
https://doi.org/10.1111/gcb.13193, 2016a.
Jenny, J.-P., Normandeau, A., Francus, P., Taranu, Z. E., Gregory-Eaves, I.,
Lapointe, F., Jautzy, J., Ojala, A. E. K., Dorioz, J.-M., Schimmelmann, A.,
and Zolitschka, B.: Urban point sources of nutrients were the leading cause
for the initial spread of hypoxia across European lakes, P. Natl. Acad. Sci.
USA, 113, 12655–12660, https://doi.org/10.1073/pnas.1605480113, 2016b.
Jilbert, T. and Slomp, C. P.: Rapid high-amplitude variability in Baltic Sea
hypoxia during the Holocene, Geology, 41, 1183–1186, https://doi.org/10.1130/G34804.1,
2013.
Jilbert, T., Conley, D. J., Gustafsson, B. G., Funkey, C. P., and Slomp, C.
P.: Glacio-isostatic control on hypoxia in a high-latitude shelf basin,
Geology, 43, 427–430, https://doi.org/10.1130/G36454.1, 2015.
Jilbert, T., Asmala, E., Schröder, C., Tiihonen, R., Myllykangas, J.-P.,
Virtasalo, J. J., Kotilainen, A., Peltola, P., Ekholm, P., and Hietanen, S.:
Impacts of flocculation on the distribution and diagenesis of iron in boreal
estuarine sediments, Biogeosciences, 15, 1243–1271,
https://doi.org/10.5194/bg-15-1243-2018, 2018.
Jokinen, S. A., Virtasalo, J. J., Kotilainen, A. T., and Saarinen, T.: Varve
microfabric record of seasonal sedimentation and bottom flow-modulated mud
deposition in the coastal northern Baltic Sea, Mar. Geol., 366, 79–96,
https://doi.org/10.1016/j.margeo.2015.05.003, 2015.
Jönsson, A., Danielsson, Å., and Rahm, L.: Bottom type distribution
based on wave friction velocity in the Baltic Sea, Cont. Shelf Res., 25,
419–435, https://doi.org/10.1016/j.csr.2004.09.011, 2005a.
Jönsson, A., Lindström, M., Carman, R., Mörth, C.-M., Meili, M.,
and Gustafsson, Ö.: Evaluation of the Stockholm Archipelago sediments,
northwestern Baltic Sea Proper, as a trap for freshwater runoff organic
carbon, J. Marine Syst., 56, 167–178, https://doi.org/10.1016/j.jmarsys.2004.11.001,
2005b.
Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T.J.,
Siegel, H., Gerth, M., Leipe, T., Jansen, E., and Damste, J. S. S.: Impact of
climate change on the Baltic Sea ecosystem over the past 1000 years, Nat.
Clim. Change, 2, 871–874, https://doi.org/10.1038/nclimate1595, 2012.
Kaiser, J. and Arz, H. W.: Sources of sedimentary biomarkers and proxies with
potential paleoenvironmental significance for the Baltic Sea, Cont. Shelf
Res., 122, 102–119, https://doi.org/10.1016/j.csr.2016.03.020, 2016.
Karlsson, O. M., Jonsson, P. O., Lindgren, D., Malmaeus, J. M., and Stehn,
A.: Indications of recovery from hypoxia in the Inner Stockholm Archipelago,
Ambio, 39, 486–495, https://doi.org/10.1007/s13280-010-0079-3, 2010.
Kienast, S. S., Calvert, S. E., and Pedersen, T. F.: Nitrogen isotope and
productivity variations along the northeast Pacific margin over the last
120 kyr: Surface and subsurface palaeoceanography, Paleocenography, 17,
1055, https://doi.org/10.1029/2001PA000650, 2002.
Kohzu, A., Imai, A., Ohkouchi, N., Fukushima, T., Kamiya, K., Komatsu, K.,
Tomioka, N., Kawasaki, N., Miura, S., and Satou, T.: Direct evidence for the
alteration of
13C natural abundances during early diagenesis in
Lake Kasumigaura, Japan, Geochem. Geophy. Geosy., 12, Q10008,
https://doi.org/10.1029/2011GC003532, 2011.
Kuosmanen, N., Seppä, H., Alenius, T., Bradshaw, R. H. W., Clear, J. L.,
Filimonova, L., Heikkilä, M., Renssen, H., Tallavaara, M., and Reitalu,
T.: Importance of climate, forest fires and human population size in the
Holocene boreal forest composition change in northern Europe, Boreas, 45,
688–702, https://doi.org/10.1111/bor.12183, 2016.
Lahtinen, R.: Turun historia, Turkuseura, Turku, 207 pp., 2014 (in Finnish).
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.:
Preservation of organic matter and alteration of its carbon and nitrogen
isotope composition during simulated and in situ early sedimentary
diagenesis, Geochim. Coscmochim. Ac., 66, 3573–3584,
https://doi.org/10.1016/S0016-7037(02)00968-7, 2002a.
Lehmann, A., Krauss, W., and Hinrichsen, H. H.: Effects of remote and local
atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus
A., 54, 299–316, https://doi.org/10.3402/tellusa.v54i3.12138, 2002b.
Leipe, T., Dippner, J. W., Hille, S., Voss, M., Christiansen, C., and
Bartholdy, J.: Environmental changes in the central Baltic Sea during the
past 1000 years: inferences from sedimentary records, hydrography and
climate, Oceanologia, 50, 23–41, 2008.
Lenz, C., Jilbert, T., Conley, D. J., Wolthers, M., and Slomp, C. P.: Are
recent changes in sediment manganese sequestration in the euxinic basins of
the Baltic Sea linked to the expansion of hypoxia?, Biogeosciences, 12,
4875–4894, https://doi.org/10.5194/bg-12-4875-2015, 2015.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J.,
Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of
natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6,
2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009.
Lincoln, B. J., Rippeth, T. P., Lenn, Y.-D., Timmermans, M. L., Williams, J.
W., and Bacon, S.: Wind-driven mixing at intermediate depths in an ice-free
Arctic Ocean, Geophys. Res. Lett., 43, 9749–9756, https://doi.org/10.1002/2016GL070454,
2016.
Llansó, R. J.: Effects of hypoxia on estuarine benthos: the lower
Rappahannock River (Chesapeake Bay), a case study, Estuar. Coast. Shelf S.,
35, 491–515, https://doi.org/10.1016/S0272-7714(05)80027-7, 1992.
Lougheed, B. C., Snowball, I., Moros, M., Kabel, K., Muscheler, R.,
Virtasalo, J. J., and Wacker, L.: Using an independent geochronology based on
paleomagnetic secular variation (PSV) and atmospheric Pb deposition to date
Baltic Sea sediments and infer
14C reservoir age, Quaternary Sci.
Rev., 42, 43–58, https://doi.org/10.1016/j.quascirev.2012.03.013, 2012.
Lougheed, B. C., Obrochta, S. P., Lenz, C., Mellström, A., Metcalfe, B.,
Muscheler, R., Reinholdsson, M., Snowball, I., and Zillén L.: Bulk
sediment
14C dating in an estuarine environment – How accurate can
it be?, Paleoceanography, 32, 123–131, https://doi.org/10.1002/2016PA002960, 2017.
Luoto, T. P.: A Finnish chironomid- and chaoborid-based inference model for
reconstructing past lake levels, Quaternary Sci. Rev., 28, 1481–1489,
https://doi.org/10.1016/j.quascirev.2009.01.015, 2009.
Maankamara – DigiKP: Digital map database (Electronic resource), Geological
Survey of Finland, available at:
http://gtkdata.gtk.fi/maankamara/,
last access: 8 June 2017.
Mäkinen, J. and Saaranen, V.: Determination of post-glacial land uplift
from the three precise levellings in Finland, J. Geodesy, 72, 516–529,
https://doi.org/10.1007/s001900050191, 1998.
Mälkki, P., Koljonen, J., Valpasvuo, V., Julin, R., Jumppanen, K., and
Juusti, T.: Saaristomeren virtaustutkimus, Virtaustutkimuksen
neuvottelukunta, Turku, 265 pp., 1979 (in Finnish).
McClelland, J. W. and Valiela, I.: Linking nitrogen in estuarine producers to
land-derived sources, Limnol. Oceanogr., 43, 577–585,
https://doi.org/10.4319/lo.1998.43.4.0577, 1998.
Meier H. E. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov,
I., Müller-Karulis, B., Neumann, T., and Savchuk, O. P.: Hypoxia in
future climates: A model ensemble study for the Baltic Sea, Geophys. Res.
Lett., 38, L24608, https://doi.org/10.1029/2011GL049929, 2011.
Meire, L., Soetaert, K. E. R., and Meysman, F. J. R.: Impact of global change
on coastal oxygen dynamics and risk of hypoxia, Biogeosciences, 10,
2633–2653, https://doi.org/10.5194/bg-10-2633-2013, 2013.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic,
paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250,
https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes, Org.
Geochem., 34, 261–289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003.
Mogollón, J. M., Dale, A. W., L'Heureux, I., and Regnier, P.: Impact of
seasonal temperature and pressure changes on methane gas production,
dissolution, and transport in unfractured sediments, J. Geophys. Res., 116,
G03031, https://doi.org/10.1029/2010JG001592, 2011.
Mort, H. P., Slomp, C. P., Gustafsson, B. G., and Andersen, T. J.: Phosphorus
recycling and burial in Baltic Sea sediments with contrasting redox
conditions, Geochim. Coscmochim. Ac., 74, 1350–1362,
https://doi.org/10.1016/j.gca.2009.11.016, 2010.
Müller, A. and Mathesius, U.: The palaeoenvironments of coastal lagoons
in the southern Baltic Sea, I, The application of sedimentary
C
org ∕ N ratios as source indicators of organic matter,
Palaeogeogr. Palaeocl., 145, 1–16, https://doi.org/10.1016/S0031-0182(98)00094-7, 1999.
Müller, P. J.: C
∕ N ratios in Pacific deep-sea sediments: Effect of
inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochim.
Coscmochim. Ac., 41, 765–776, https://doi.org/10.1016/0016-7037(77)90047-3, 1977.
Ning, W., Tang, J., and Filipsson, H. L.: Long-term coastal openness
variation and its impact on sediment grain-size distribution:
a case study
from the Baltic Sea, Earth Surf. Dynam., 4, 773–780,
https://doi.org/10.5194/esurf-4-773-2016, 2016.
Ning, W., Nielsen, A. B., Norbäck Ivarsson, L., Jilbert, T.,
Åkesson, C. M., Slomp, C. P., Andrén, E., Broström, A.,
and Filipsson, H. L.: Anthropogenic and climatic impacts on a coastal
environment in the Baltic Sea over the last 1000 years, Anthropocene, 21,
66–79, https://doi.org/10.1016/j.ancene.2018.02.003, 2018.
Noordmann, J., Weyer, S., Montoya-Pino, C., Dellwig, O., Neubert, N., Eckert,
S., Paetzel, M., and Böttcher, M. E.: Uranium and molybdenum isotope
systematics in modern euxinic basins: Case studies from the central Baltic
Sea and the Kyllaren fjord (Norway), Chem. Geol., 396, 182–195,
https://doi.org/10.1016/j.chemgeo.2014.12.012, 2015.
O'Connor, A. E., Luek, J. L., McIntosh, H., and Beck, A. J.: Geochemistry of
redox-sensitive trace elements in a shallow subterranean estuary, Mar. Chem.,
172, 70–81, https://doi.org/10.1016/j.marchem.2015.03.001, 2015.
Ojala, A. E. K. and Alenius, T.: 10 000 years of interannual sedimentation
recorded in the Lake Nautajärvi (Finland) clastic–organic varves,
Palaeogeogr. Palaeocl., 219, 285–302, https://doi.org/10.1016/j.palaeo.2005.01.002,
2005.
Pamatmat, M. M.: Oxygen consumption by the seabed, VI, Seasonal cycle of
chemical oxidation and respiration in Puget Sound, Int. Rev. Hydrobiol., 56,
769–793, https://doi.org/10.1002/iroh.19710560505, 1971.
Papadomanolaki, N. M., Dijkstra, N., Van Helmond, N. A. G. M., Hagens, M.,
Bauersachs, T., Kotthoff, U., Sangiorgi, F., and Slomp, C. P.: Controls on
the onset and termination of past hypoxia in the Baltic Sea, Palaeogeogr.
Palaeocl., 490, 347–354, https://doi.org/10.1016/j.palaeo.2017.11.012, 2018.
Passow, U.: Switching perspectives: Do mineral fluxes determine particulate
organic carbon fluxes or vice versa?, Geochem. Geophy. Geosy., 5, Q04002,
https://doi.org/10.1029/2003GC000670, 2004.
Passow, U. and De La Rocha, C.: Accumulation of mineral ballast on organic
aggregates, Global Biogeochem. Cy., 20, GB1013, https://doi.org/10.1029/2005GB002579,
2006.
Pedersen, T. F. and Calvert, S. E.: Anoxia versus productivity: What controls
the formation of organic-rich sediments and sedimentary rocks?, Bull. Am.
Assoc. Petrol. Geol., 74, 454–466, 1990.
Peltola, P., Virtasalo, J. J., Öberg, T., and Åström, M.:
Geochemistry of surface sediments in the Archipelago Sea, SW Finland: a
multiparameter and multivariate study, Environ. Earth Sci., 62, 725–734,
https://doi.org/10.1007/s12665-010-0561-z, 2011.
Perdue, E. M. and Koprivnjak, J.-F.: Using the C
∕ N ratio to estimate
terrigenous inputs of organic matter to aquatic environments, Estuar. Coast.
Shelf S., 73, 65–72, https://doi.org/10.1016/j.ecss.2006.12.021, 2007.
Persson, J. and Jonsson, P.: Historical development of laminated sediments –
an approach to detect soft sediment ecosystem changes in the Baltic Sea, Mar.
Pollut. Bull., 40, 122–134, https://doi.org/10.1016/S0025-326X(99)00180-0, 2000.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The biomarker guide:
Biomarkers and isotopes in the petroleum exploration and Earth history,
Second edition, Cambridge University Press, Cambridge, 1155 pp., 2005.
Peterse, F., Kim, J.-H., Schouten, S., Klitgaard Kristensen, D., Koç, N.,
and Sinninghe Damsté, J. S.: Constraints on the application of the MBT/CBT
paleothermometer in high latitude environments (Svalbard, Norway), Org.
Geochem., 40, 692–699, https://doi.org/10.1016/j.orggeochem.2009.03.004, 2009.
Piva, A., Asioli, A., Schneider, R. R., Trincardi, F., Andersen, N.,
Colmenero-Hidalgo, E., Dennielou, B., Flores, J.-A., and Vigliotti, L.:
Climatic cycles as expressed in sediments of the PROMESS1 borehole PRAD1-2,
central Adriatic, for the last 370 ka: 1. Integrated stratigraphy, Geochem.
Geophy. Geosy., 9, Q01R01, https://doi.org/10.1029/2007GC001713, 2008.
Puttonen, I., Mattila, J., Jonsson, P., Karlsson, O. M., Kohonen, T.,
Kotilainen, A., Lukkari, K., Malmaeus, J. M., and Rydin, E.: Distribution and
estimated release of sediment phosphorus in the northern Baltic Sea
archipelagos, Estuar. Coast. Shelf S., 145, 9–21,
https://doi.org/10.1016/j.ecss.2014.04.010, 2014.
Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D.,
and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia,
Biogeosciences, 7, 585–619, https://doi.org/10.5194/bg-7-585-2010, 2010.
Rabalais, N. N., Cai, W., Carstensen, J., Conley, D. J., Fry, B., Hu, X.,
Quinones-Rivera, Z., Rosenberg, R., Slomp, C. P., Turner, R. E., Voss, M.,
Wissel, B., and Zhang, J.: Eutrophication-driven deoxygenation in the coastal
ocean, Oceanography, 27, 172–183, https://doi.org/10.5670/oceanog.2014.21, 2014.
Renberg, I., Brännvall, M.-L., Bindler, R., and Emteryd, O.: Stable
isotopes and lake sediments – a useful combination for the study of
atmospheric lead pollution history, Sci. Total Environ., 292, 45–54,
https://doi.org/10.1016/S0048-9697(02)00032-3, 2002.
Ronkainen, I.: Long-term changes in Baltic Sea ice conditions, M.S. thesis,
Department of Physics, University of Helsinki, Finland, 73 pp., 2013.
Rooze, J., Egger, M., Tsandev, I., and Slomp, C. P.: Iron-dependent anaerobic
oxidation of methane in coastal surface sediments: Potential controls and
impact, Limnol. Oceanogr., 61, S267–S282, https://doi.org/10.1002/lno.10275, 2016.
Rößler, D., Moros, M., and Lemke, W.: The Littorina transgression in
the southwestern Baltic Sea: new insights based on proxy methods and
radiocarbon dating of sediment sediment cores, Boreas, 40, 231–241,
https://doi.org/10.1111/j.1502-3885.2010.00180.x, 2011.
Rost, B., Riebesell, U., and Burkhardt, S.: Carbon acquisition of
bloom-forming marine phytoplankton, Limnol. Oceanogr., 48, 55–67,
https://doi.org/10.4319/lo.2003.48.1.0055, 2003.
Rutgersson, A., Jaagus, J., Schenk, F., and Stendel, M.: Observed changes and
variability of atmospheric parameters in the Baltic Sea region during the
last 200 years, Clim. Res., 61, 177–190, https://doi.org/10.3354/cr01244, 2014.
Saarni, S., Saarinen, T., and Lensu, A.: Organic lacustrine sediment varves
as indicators of past precipitation changes: a 3000-year climate record from
Central Finland, J. Paleolimnol., 53, 401–413,
https://doi.org/10.1007/s10933-015-9832-8, 2015.
Saarni, S., Muschitiello, F., Weege, S., Brauer, A., and Saarinen, T.: A late
Holocene record of solar-forced atmospheric blocking variability over
Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi,
Quaternary Sci. Rev., 154, 100–110, https://doi.org/10.1016/j.quascirev.2016.10.019,
2016.
Savage, C., Leavitt, P. R., and Elmgren, R.: Effects of land use
urbanization, and climate variability on coastal eutrophication in the Baltic
Sea, Limnol. Oceanogr., 55, 1033–1046, https://doi.org/10.4319/lo.2010.55.3.1033, 2010.
Savrda, C. E. and Bottjer, D. J.: Trace-fossil model for reconstruction of
paleo-oxygenation in bottom waters, Geology, 14, 3–6,
https://doi.org/10.1130/0091-7613(1986)14<3:TMFROP>2.0.CO;2, 1986.
Savrda, C. E. and Bottjer, D. J.: Oxygen-related biofacies in marine strata:
an overview and update, in: Modern and ancient continental shelf anoxia,
edited by: Tyson, R. V. and Pearson, T. H., Geol. Soc. London Spec. Publ.,
58, 201–219, https://doi.org/10.1144/GSL.SP.1991.058.01.14, 1991.
Sawicka, J. E. and Brüchert, V.: Annual variability and regulation of
methane and sulfate fluxes in Baltic Sea estuarine sediments, Biogeosciences,
14, 325–339, https://doi.org/10.5194/bg-14-325-2017, 2017.
Scheiderich, K., Helz, G. R., and Walker, R. J.: Century-long record of Mo
isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake
Bay), Earth Planet. Sc. Lett., 289, 189–197, https://doi.org/10.1016/j.epsl.2009.11.008,
2010.
Schimanke, S., Meier, H. E. M., Kjellström, E., Strandberg, G., and
Hordoir, R.: The climate in the Baltic Sea region during the last millennium
simulated with a regional climate model, Clim. Past, 8, 1419–1433,
https://doi.org/10.5194/cp-8-1419-2012, 2012.
Schlitzer, R.: Ocean Data View, available at:
http://odv.awi.de (last
access: 10 August 2017), 2017.
Scholz, F., McManus, J., and Sommer, S.: The manganese and iron shuttle in a
modern euxinic basin and implications for molybdenum cycling at euxinic ocean
margins, Chem. Geol., 355, 56–68, https://doi.org/10.1016/j.chemgeo.2013.07.006, 2013.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Scott, C. and Lyons, T. W.: Contrasting molybdenum cycling and isotopic
properties in euxinic versus non-euxinic sediments and sedimentary rocks:
Refining the paleoproxies, Chem. Geol., 324–325, 19–27,
https://doi.org/10.1016/j.chemgeo.2012.05.012, 2012.
Seinä, A.: Extent of ice cover 1961–1990 and restrictions to navigation
1981–1990 along the Finnish coast, Finnish Marine Research., 262, 3–34,
1994.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., and
Wolthers, M.: Coupled dynamics of iron and phosphorus in sediments of an
oligotrophic basin and the impact of anaerobic oxidation of methane, PLoS
One, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013.
Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and
Verschuren, D.: Fluxes and distribution of tetraether lipids in an equatorial
African lake: Constraints on the application of the TEX
86
palaeothermometer and BIT index in lacustrine settings, Geochim. Coscmochim.
Ac., 73, 4232–4249, https://doi.org/10.1016/j.gca.2009.04.022, 2009.
Spofforth, D. J. A., Pälike, H., and Green, D.: Paleogene record of
elemental concentrations in sediments from the Arctic Ocean obtained by XRF
analyses, Paleoceanography, 23, PA1S09, https://doi.org/10.1029/2007PA001489, 2008.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., and Ludwig, C.: The
trajectory of the Anthropocene: The Great Acceleration, The Anthropocene
Review, 2, 81–98, https://doi.org/10.1177/2053019614564785, 2015.
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D.,
Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L.,
Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B.,
and Jansson, K. N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147,
91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Struck, U., Emeis, K.-C., Voss, M., Christiansen, C., and Kunzendorf, H.:
Records of southern and central Baltic Sea eutrophication in
δ13C and
δ15N of sedimentary organic matter,
Mar. Geol., 164, 157–171, https://doi.org/10.1016/S0025-3227(99)00135-8, 2000.
Sulu-Gambari, F., Roepert, A., Jilbert, T., Mathilde, H., Meysman, F. J. R.,
and Slomp, C. P.: Molybdenum dynamics in sediments of a seasonally-hypoxic
coastal marine basin, Chem. Geol., 466, 627–640,
https://doi.org/10.1016/j.chemgeo.2017.07.015, 2017.
Suomela, J.: Meren kuormitus ja tila Saaristomerellä ja Ahvenanmaalla,
Varsinais-Suomen elinkeino-, liikenne-, ja ympäristökeskuksen
julkaisuja, 6, 1–117, 2011 (in Finnish).
Thomsen, E. and Vorren, T. O.: Pyritization of tubes and burrows from Late
Pleistocene continental shelf sediments off North Norway, Sedimentology, 31,
481–492, https://doi.org/10.1111/j.1365-3091.1984.tb01814.x, 1984.
Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y., and Varela, R.:
Nitrogen isotope dynamics of the Cariaco Basin, Venezuela, Global Biogeochem.
Cy., 18, GB3001, https://doi.org/10.1029/2003GB002185, 2004.
Tiljander, M., Saarnisto, M., Ojala, A. E. K., and Saarinen, T.: A 3000-year
palaeoenvironmental record of annually laminated sediment of Lake
Korttajärvi, central Finland, Boreas, 26, 566–577,
https://doi.org/10.1111/j.1502-3885.2003.tb01236.x, 2003.
Tuomenvirta, H., Drebs, A., Førland, E., Tveito, O. E., Alexandersson, H.,
Laursen, E. V., Jónsson, T., and Gama, J.: nordklimdata1: Dataset for
climate analysis with data from the Nordic region, R package, version 1.2,
2015.
Tuovinen, N., Virtasalo, J. J., and Kotilainen, A. T.: Holocene diatom
stratigraphy in the Archipelago Sea, northern Baltic Sea, J. Paleolimnol.,
40, 793–807, https://doi.org/10.1007/s10933-008-9199-1, 2008.
Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H.,
Savchuk, O. P., Tamminen, T., and Viitasalo, M.: Internal ecosystem feedbacks
enhance nitrogen-fixing cyanobacteria blooms and complicate management in the
Baltic Sea, Ambio, 36, 186–194,
https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2, 2007.
Väliranta, M., Korhola, A., Seppä, H., Tuittila, E.-S.,
Sarmaja-Korhonen, K., Laine, J., and Alm, J.: High-resolution reconstruction
of wetness dynamics in a southern boreal raised bog, Finland, during the late
Holocene: a quantitative approach, Holocene, 17, 1093–1107,
https://doi.org/10.1177/0959683607082550, 2007.
Van Helmond, N. A. G. M., Krupinski, N. B. Q., Lougheed, B. C., Obrochta, S.
P., Andrén, T., and Slomp, C. P.: Seasonal hypoxia was a natural feature
of the coastal zone in the Little Belt Denmark, during the past 8 ka, Mar.
Geol., 387, 45–57, https://doi.org/10.1016/j.margeo.2017.03.008, 2017.
Venkatesan, M. I. and Kaplan, J. R.: The lipid geochemistry of Antarctic
marine sediments: Bransfield Strait, Mar. Chem., 21, 347–375,
https://doi.org/10.1016/0304-4203(87)90056-9, 1987.
Verburg, P.: The need to correct for the Suess effect in the application of
δ13C in sediment of autotrophic Lake Tanganyika, as a
productivity proxy in the Anthropocene, J. Paleolimnol., 37, 591–602,
https://doi.org/10.1007/s10933-006-9056-z, 2007.
Virtasalo, J. J., Kohonen, T., Vuorinen, I., and Huttula, T.: Sea bottom
anoxia in the Archipleago Sea, northern Baltic Sea – Implications for
phosphorus remineralization at the sediment surface, Mar. Geol., 224,
103–122, https://doi.org/10.1016/j.margeo.2005.07.010, 2005.
Virtasalo, J. J., Kotilainen, A. T., and Gingras, M. K.: Trace fossils as
indicators of environmental change in Holocene sediments of the Archipelago
Sea, northern Baltic Sea, Palaeogeogr. Palaeocl., 240, 453–467,
https://doi.org/10.1016/j.palaeo.2006.02.010, 2006.
Virtasalo, J. J., Kotilainen, A. T., Räsänen, M. E., and Ojala, A. E.
K.: Late-glacial and post-glacial deposition in a large, low relief,
epicontinental basin: the northern Baltic Sea, Sedimentology, 54, 1323–1344,
https://doi.org/10.1111/j.1365-3091.2007.00883.x, 2007.
Virtasalo, J. J., Bonsdorff, E., Moros, M., Kabel, K., Kotilainen, A. T.,
Ryabchuk, D., Kallonen, A., and Hämäläinen, K.: Ichnological
trends along an open-water transect across a large marginal-marine
epicontinental basin, the modern Baltic Sea, Sediment. Geol., 241, 40–51,
https://doi.org/10.1016/j.sedgeo.2011.09.010, 2011a.
Virtasalo, J. J., Leipe, T., Moros, M., and Kotilainen, A. T.:
Physicochemical and biological influences on sedimentary-fabric formation in
a salinity and oxygen-restricted semi-enclosed sea: Gotland Deep, Baltic Sea,
Sedimentology, 58, 352–375, https://doi.org/10.1111/j.1365-3091.2010.01166.x, 2011b.
Virtasalo, J. J., Hämäläinen, J., and Kotilainen, A. T.: Toward a
standard stratigraphical classification practice for the Baltic Sea
sediments: the CUAL approach, Boreas, 43, 924–938, https://doi.org/10.1111/bor.12076,
2014.
Voss, M. and Struck, U.: Stable nitrogen and carbon isotopes as indicator of
eutrophication of the Oder river (Baltic Sea), Mar. Chem., 59, 35–49,
https://doi.org/10.1016/S0304-4203(97)00073-X, 1997.
Voss, M., Altabet, M. A., and Von Bodungen, B.:
δ15N in
sedimenting particles as indicator of euphotic zone processes, Deep-Sea Res.,
43, 33–47, https://doi.org/10.1016/0967-0637(95)00099-2, 1996.
Voss, M., Larsen, B., Leivuori, M., and Vallius, H.: Stable isotope signals
of eutrophication in Baltic Sea sediments, J. Marine Syst., 25, 287–298,
https://doi.org/10.1016/S0924-7963(00)00022-1, 2000.
Voss, M., Emeis, K.-C., Hille, S., Neumann, T, and Dippner, J. W.: Nitrogen
cycle of the Baltic Sea from an isotopic perspective, Global Biogeochem. Cy.,
19, GB3001, https://doi.org/10.1029/2004GB002338, 2005.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté,
J. S.: Occurrence and distribution of tetraether membrane lipids in soils:
Implications for the use of the TEX
86 proxy and the BIT index, Org.
Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006.
Wetzel, A.: Ecologic interpretation of deep-sea trace fossil communities,
Palaeogeogr. Palaeocl., 85, 47–69, https://doi.org/10.1016/0031-0182(91)90025-M, 1991.
Zhang, J., Gilbert, D., Gooday, A. J., Levin, L., Naqvi, S. W. A.,
Middelburg, J. J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz,
T., Monteiro, P. M. S., Urban, E., Rabalais, N. N., Ittekkot, V., Kemp, W.
M., Ulloa, O., Elmgren, R., Escobar-Briones, E., and Van der Plas, A. K.:
Natural and human-induced hypoxia and consequences for coastal areas:
synthesis and future development, Biogeosciences, 7, 1443–1467,
https://doi.org/10.5194/bg-7-1443-2010, 2010.
Zillén, L. and Conley, D. J.: Hypoxia and cyanobacteria blooms – are
they really natural features of the late Holocene history of the Baltic Sea?,
Biogeosciences, 7, 2567–2580, https://doi.org/10.5194/bg-7-2567-2010, 2010.
Zillén, L., Lenz, C., and Jilbert, T.: Stable lead (Pb) isotopes and
concentrations – A useful independent dating tool for Baltic Sea sediments,
Quat. Geochronol., 8, 41–45, https://doi.org/10.1016/j.quageo.2011.11.001, 2012.