Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges

Ji-Hyung Park1, Omme K. Nayna1, Most S. Begum1, Eliyan Chea2, Jens Hartmann3, Richard G. Keil4, Sanjeev Kumar5, Xixi Lu6, Lishan Ran7, Jeffrey E. Richey4, Vedula V. S. S. Sarma8, Shafi M. Tareq9, Do Thi Xuan10, and Ruihong Yu11

1Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
2Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, Cambodia
3Institute for Geology, Universität Hamburg, Hamburg, Germany
4School of Oceanography, University of Washington, Seattle, 98112, USA
5Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
6Department of Geography, National University of Singapore, Singapore
7Department of Geography, University of Hong Kong, Pokfulam Road, Hong Kong
8National Institute of Oceanography, Council of Scientific and Industrial Research, Visakhapatnam, India
9Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
10Department of Soil Science, Cantho University, Cantho, Vietnam
11College of Environment and Resources, University of Inner Mongolia, Hohhot, China

Correspondence: Ji-Hyung Park (jhp@ewha.ac.kr)

Received: 19 December 2017 – Discussion started: 16 January 2018
Revised: 25 April 2018 – Accepted: 26 April 2018 – Published: 17 May 2018

Abstract. Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C) fluxes of Asian rivers that may account for up to 40–50% of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River) and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in “anthropogenic land-water-scapes”, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts address-
ter withdrawal, generating annually 120 km3 of wastewater in 24 countries, which comprises 39% of the global municipal wastewater production. Although municipal wastewater constitutes only 1% of the renewable surface water, it can disproportionately affect the receiving river water, particularly downstream of rapidly expanding metropolitan areas, resulting in eutrophication, increases in the amount and lability of organic C, and pulse emissions of CO$_2$ and other GHGs. In rivers draining highly populated metropolitan areas, lower reaches and tributaries, which are often plagued by frequent algal blooms and pulsatile CO$_2$ emissions from urban tributaries delivering high loads of wastewater, tended to exhibit higher levels of organic C and the partial pressure of CO$_2$ (p_{CO_2}) than less impacted upstream reaches and eutrophic impounded reaches. More field measurements of p_{CO_2}, together with accurate flux calculations based on river-specific model parameters, are required to provide more accurate estimates of GHG emissions from the Asian rivers that are now underrepresented in the global C budgets. The new conceptual framework incorporating discontinuities created by impoundment and pollution into the river continuum needs to be tested with more field measurements of riverine metabolisms and CO$_2$ dynamics across variously affected reaches to better constrain altered fluxes of organic C and CO$_2$ resulting from changes in the balance between autotrophy and heterotrophy in increasingly human-modified river systems across Asia and other continents.

1 Introduction

Inland waters play a pivotal role in the global carbon (C) cycle by storing, transporting, or transforming inorganic and organic C components along the hydrologic continuum linking the land and oceans (Kempe, 1982, 1984; Cole et al., 2007; Battin et al., 2009). Recent syntheses have provided greater estimates for the riverine transport of dissolved organic C (DOC) and particulate organic C (POC) and the exchange of CO$_2$ between the atmosphere and inland waters than previous studies (Raymond et al., 2013; Regnier et al., 2013; Wehrli, 2013; Ward et al., 2017). Monitoring data are sparse for many river systems in Asia and Africa, leaving many blind spots in global syntheses of riverine C transport and emission. Although Asian rivers have been estimated to account for up to 40–50% of the global inorganic and organic C fluxes from the land to the oceans (Degens et al., 1991; Ludwig et al., 1996; Schlünz and Schneider, 2000; Dai et al., 2012), the lack of high-quality data and poor spatial coverage have constrained our ability to estimate the contributions of Asian river systems to the global riverine C fluxes in general and CO$_2$ outgassing in particular (Schlünz and Schneider, 2000; Lauerwald et al., 2015; Li and Bush, 2015a, b). For instance, obtaining p_{CO_2} data measured in Southeast Asian rivers was suggested as a top priority to reduce the large uncertainty in estimating the global riverine CO$_2$ outgassing (Lauerwald et al., 2015).

The release of C from anthropogenic sources in rapidly urbanizing watersheds around the world increases the uncertainty of the current global riverine C flux estimates (Regnier et al., 2013). Concurrent anthropogenic perturbations to the river systems, including eutrophication, altered sediment regimes, and increased water residence time in impounded rivers, can significantly change the riverine processing of organic matter (OM) and greenhouse gas (GHG) outgassing (Stanley et al., 2012; Regnier et al., 2013; Crawford et al., 2016). Many streams and rivers across Asia are highly polluted by agricultural runoff and domestic and industrial wastewater, with their water quality often exhibiting large seasonal variations associated with regional monsoon rainfall regimes (Park et al., 2010, 2011; Evans et al., 2012, Bhatt et al., 2014). Although enhanced lability and mineralization of organic C have been observed in streams and rivers draining urbanized watersheds (Hosen et al., 2014; Kaushal et al., 2014), little is known about organic C export and CO$_2$ outgassing from streams and rivers draining rapidly urbanizing watersheds in developing Asian countries (Bhatt et al., 2014). A few recent studies conducted in the metropolitan areas of China and Korea have suggested that GHG emissions from polluted waterways carrying urban runoff and wastewater treatment plant (WWTF) effluents may be underappreciated as sources of GHGs (Wang et al., 2017; Yoon et al., 2017). Despite recent booms in the construction of large dams on many large rivers across the region, little attention has been paid to impoundment effects on GHG emissions (Chen et al., 2009; Hu and Cheng, 2013). Considering the role of dams in storing huge amounts of sediment and organic C (Syvitski et al., 2005; Mauvara et al., 2017), a mechanistic understanding of GHG emissions from impounded rivers can provide more insights into the anthropogenic perturbations to the C fluxes of dammed river systems.

This review aims to provide a conceptual framework for assessing the human impacts on riverine C fluxes and an update on major anthropogenic perturbations affecting C fluxes in Asian river systems, focusing on the impacts of water pollution and river impoundments on riverine CO$_2$ dynamics in South (S), Southeast (SE), and East (E) Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania (Fig. 1). An important goal was to integrate various concepts of riverine biogeochemical processes into a conceptual framework for assessing human impacts on the riverine C fluxes in human-modified river systems. Given the pace and wide-ranging impacts of urbanization and river impoundments, the traditional view of the river continuum developed for natural streams and rivers (Vannote et al., 1980) needs to be revised to reflect altered regimes of riverine metabolic processes and material fluxes. We compared reported values of p_{CO_2} that had been either measured or estimated for major river basins in three Asian regions, including the Ganges, the Mekong, and the Yellow River as...
representative systems of three regions, to assess the current status. We also compared pCO_2 values among different components of the river basin (main stem, headwater, tributary, and impoundment) to examine how water pollution and impoundments alter riverine metabolic processes and CO_2 emissions. Many of the reported values have been estimated from pH and alkalinity data available from the literature and water quality databases such as GLORICH (Global River Chemistry Database; Hartmann et al., 2014). Considering potential overestimations of water pCO_2 associated with organic acid contributions and increased sensitivity to alkalinity in acidic, organic-rich waters with low carbonate buffering (Abril et al., 2015), we provided methodological details for the calculated pCO_2 values if the cited references considered these pH and alkalinity effects. This review and the following synthesis efforts are expected to provide scientifically robust conceptual frameworks and data that are required for a better understanding of how human-induced perturbations in rapidly urbanizing watersheds across Asia transform riverine metabolic processes and C fluxes away from the “natural” states assumed in the traditional river continuum model.

2 The geographical scope, global implications, and emerging regional trends of Asian river systems

Global syntheses of riverine C fluxes have been based on monitoring data available for a limited number of large rivers (e.g., Degens et al., 1991; Ludwig et al., 1996). We referred to these previous syntheses and a more recent synthesis of global river discharge (Milliman and Farnsworth, 2011) to scope the geographical extent of Asian river systems. We followed the continental categories used by Milliman and Farnsworth (2011), namely Asia and Oceania demarcated in Fig. 1, but did not consider Arctic rivers in Russia and rivers in Australia and New Zealand. This review focuses on S, SE, and E Asian regions where river systems are commonly affected by increasing human impacts and for which data are available to address major review themes. Ten large rivers in three Asian regions (Fig. 1) belong to top 30 global rivers based on discharge (Raymond and Spencer, 2015), 32 rivers included in a previous global synthesis of riverine C fluxes (Ludwig et al., 1996), or 34 rivers with basin areas greater than 500,000 km2 (Milliman and Farnsworth, 2011). The river systems in these Asian regions share some common hydrologic and demographic features (Table 1), including a large seasonality in discharge,
high population densities (80–513 km$^{-2}$) compared to the global mean (70 km$^{-2}$), and a wide range of per capita annual discharge (23–8594 m3 yr$^{-1}$ person$^{-1}$ vs. the global mean: 4901 m3 yr$^{-1}$ person$^{-1}$). Large seasonal variations in precipitation and runoff associated with Asian monsoon systems play a critical role in hydrologically mediated riverine processes including those affecting C fluxes (Park et al., 2010). Recent demographic changes including an unprecedented rapid growth in population may cause increasingly severe perturbations to water and material flows along the rivers that are not only regulated by dams but are also polluted by urban sewage and agricultural runoff.

According to an earlier estimation (Degens et al., 1991), Asian rivers account for up to 35, 50, and 39% of the global discharge, total organic C (TOC) export, and dissolved inorganic C (DIC) export. Schlünz and Schneider (2000) provided a lower estimate for TOC export by Asian rivers (175.2 Tg C yr$^{-1}$; 40% of the global TOC flux). Ludwig et al. (1996) provided separate estimates for the export of DOC (69.01 Tg C yr$^{-1}$) and POC (76.40 Tg C yr$^{-1}$) by Asian rivers, which represented 34 and 44% of the corresponding global fluxes, respectively. More recent syntheses of the published data have corroborated the quantitative importance of Asian rivers in the global fluvial C fluxes (Dai et al., 2012; Huang et al., 2012; Galy et al., 2015). As indicated by the lower ratio of DOC to POC (0.9) compared to other regions with the ratio exceeding 1, many Asian rivers draining erosion-prone mountainous terrain deliver more POC than DOC, particularly during the monsoon period (Ittekkot et al., 1988; Ludwig et al., 1996). Monsoonal increases in discharge and POC can have either a positive effect on riverine pCO$_2$ levels through the enhanced soil flushing of DIC and/or in-stream organic C biodegradation or a negative effect caused by dilution, as observed in such turbid Asian rivers as the Pearl (Yao et al., 2007), Yangtze (Li et al., 2012), and Mekong (Li et al., 2015). Constraining differential monsoon effects on the fluxes of DOC, POC, and DIC including CO$_2$ represents a key challenge in evaluating the contribution of Asian rivers to the global riverine C fluxes.

Previous syntheses based on a small number of data sets collected in several large Asian rivers during the 1970s and 1980s provide only limited information when we assess the effects of “ongoing” environmental changes on riverine C fluxes. Therefore, this review aims to provide an update on Asian river C fluxes, focusing on river impoundment and pollution as two of the most important environmental changes affecting river systems across three target Asian regions. There have been few systematic assessments of the effects of impoundments and water pollution on the C fluxes of Asian rivers (Sarma et al., 2011; Ran et al., 2014; Li and Bush, 2015a, b). For example, a cascade of dams constructed along the upper Mekong River since the 1990s have been implicated to cause a wide range of downstream impacts including decreases in water and sediment flow (Li and Bush, 2015a). Although it is expected that declining sediment flux can significantly alter POC and associated C fractions along downstream reaches, little is known about impoundment effects on the fluxes of POC, DOC, DIC, and CO$_2$ in the upper and lower Mekong River. This lag between the real-time environmental changes and scientific assessments based on outdated data is quite surprising given the magnitude and pace of the environmental changes occurring across Asia. Deforestation and associated peatland drainage in tropical areas represent another important but rarely explored topic with regard to CO$_2$ outgassing from Asian rivers (Baum et al., 2007; Wit et al., 2015). A recent study suggested that peatland drainage could enhance organic matter degradation in the coastal peatlands and organic-rich soils of Southeast Asian lowland areas and islands, increasing CO$_2$ outgassing from the rivers draining the affected areas (Wit et al., 2015). However, this issue cannot be addressed in detail here because only a few studies have been conducted in Indonesia and Malaysia.

3 Conceptual framework for understanding interactive effects of changing land-water-scape and climate on riverine C fluxes

Human-induced land changes, as manifested in agricultural lands and urban areas, drive changes in biogeochemical cycles and climates, with altered terrestrial biogeochemical cycles often leading to pollution in downstream aquatic sys-
Table 1. Geographic and demographic features of the major river systems addressed in the review in comparison with Asian and global sums.

<table>
<thead>
<tr>
<th>River</th>
<th>Receiving sea</th>
<th>Region</th>
<th>Basin area (10^7 km^2)</th>
<th>Annual discharge (km^3 yr^-1)</th>
<th>Population (×10^6)</th>
<th>Population density (per km^2)</th>
<th>Annual discharge per capita (m^3 yr^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganges</td>
<td>Bay of Bengal</td>
<td>S Asia</td>
<td>980</td>
<td>490</td>
<td>411</td>
<td>419</td>
<td>1193</td>
</tr>
<tr>
<td>Brahmaputra</td>
<td>Bay of Bengal</td>
<td>S Asia</td>
<td>670</td>
<td>630</td>
<td>145</td>
<td>216</td>
<td>4353</td>
</tr>
<tr>
<td>Indus</td>
<td>Arabian Sea</td>
<td>S Asia</td>
<td>980</td>
<td>5 (90)</td>
<td>220</td>
<td>224</td>
<td>23 (410)</td>
</tr>
<tr>
<td>Krishna</td>
<td>Bay of Bengal</td>
<td>S Asia</td>
<td>260</td>
<td>12 (62)</td>
<td>101</td>
<td>390</td>
<td>118 (611)</td>
</tr>
<tr>
<td>Godavari</td>
<td>Bay of Bengal</td>
<td>S Asia</td>
<td>310</td>
<td>92 (120)</td>
<td>121</td>
<td>390</td>
<td>761 (993)</td>
</tr>
<tr>
<td>Mekong</td>
<td>South China Sea</td>
<td>SE Asia</td>
<td>800</td>
<td>550</td>
<td>64</td>
<td>80</td>
<td>8594</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow Sea</td>
<td>E Asia</td>
<td>750</td>
<td>15 (43)</td>
<td>120</td>
<td>160</td>
<td>125 (358)</td>
</tr>
<tr>
<td>Yangtze</td>
<td>East China Sea</td>
<td>E Asia</td>
<td>1800</td>
<td>900</td>
<td>475</td>
<td>264</td>
<td>1894</td>
</tr>
<tr>
<td>Pearl River</td>
<td>South China Sea</td>
<td>E Asia</td>
<td>490</td>
<td>260</td>
<td>95</td>
<td>193</td>
<td>2749</td>
</tr>
<tr>
<td>Han River</td>
<td>Yellow Sea</td>
<td>E Asia</td>
<td>25</td>
<td>17</td>
<td>13</td>
<td>513</td>
<td>1326</td>
</tr>
<tr>
<td>Asia total</td>
<td></td>
<td></td>
<td>32 518</td>
<td>11 000</td>
<td>4835</td>
<td>148</td>
<td>227</td>
</tr>
<tr>
<td>Global total</td>
<td></td>
<td></td>
<td>105 000</td>
<td>36 000</td>
<td>7345</td>
<td>70</td>
<td>4901</td>
</tr>
</tbody>
</table>

River basin area and discharge data were obtained from Milliman and Farnsworth (2011), supplemented with Asian and global sums in parentheses from Ludwig et al. (1996). Pre-diversion discharge data are provided in parentheses for the rivers where discharge has substantially decreased in recent years because of river diversion, reservoir construction, and irrigation. The Asia total discharge provided by Milliman and Farnsworth (2011) was estimated for all rivers in Asia and Oceania, excluding Arctic rivers in Russia. Population data were taken from various sources including Schmidt et al. (2017) and the CIA World Factbook (https://www.cia.gov/library/publications/the-world-factbook/index.html; last accessed: 10 January 2018). Asia total population is the population for all countries belonging to Asia and Oceania excluding Russia.

tems (Grimm et al., 2008). As a consequence of global urbanization, human influences are pervasive across the interacting terrestrial and aquatic patches of riverine landscapes or riverscapes (Allan, 2004; McCluney et al., 2014). To emphasize the dominant human influences on connectivity and the interactions among terrestrial and aquatic patches of the riverine networks, we term these anthropogenically modified riverscapes “anthropogenic land-water-scapes”. Compared to the previous use of the term “land-water-scape” focusing on terrestrial–aquatic boundary conditions in urbanized watersheds (Cadenasso et al., 2008), our use is more general and inclusive, covering longitudinal linkages between less or more modified upstream and downstream reaches. Rivers dominated by the effluents of wastewater treatment plants (WWTPs) provide an example of how human activities, through water withdrawal and wastewater generation, modify flows of water and materials across this anthropogenic land-water-scape. In the case of rivers draining arid areas, WWTP effluents can not only increase river flow but also provide a source of water feeding into habitats for various aquatic organisms along downstream reaches (Luthy et al., 2015). Rapid, concurrent changes in land use and river flow and chemistry make Asian rivers a perfect test bed for exploring how human-induced perturbations alter hydro-biogeochemical cycles across the components of these anthropogenic land-water-scapes.

New conceptual templates can build on some existing concepts that have been used to explain natural riverine processes. Above all, the river continuum from headwaters to mouth has been one of the most widely used concepts to represent longitudinal connectivity in river ecosystem structure and function over the last 5 decades (Vannote et al., 1980; Webster, 2007). The original river continuum concept envisaged gradual and continual changes in OM composition and metabolic rates in correspondence to downstream variations in environmental conditions and biotic communities along the river (Vannote et al., 1980; Fig. 2). Recent biogeochemical studies based on the river continuum concept include those of OM chemical diversity (Mosher et al., 2015) and biodegradability (Catalán et al., 2016) and riverine CO₂ outgassing (Hotchkiss et al., 2015). A prevailing idea underlying these approaches has been the selective degradation of labile components of OM during transit across the continuum, which has been successful in explaining the critical role of water retention time for the downstream evolution of the composition and biodegradability of DOM in river systems with a relatively high proportion of natural lakes and/or low levels of anthropogenic perturbations (Koehler et al., 2012; Weyhenmeyer et al., 2012; Mosher et al., 2015; Catalán et al., 2016). According to the reactivity continuum model, the composition of DOM becomes dominated gradually by highly degraded compounds as a result of the prolonged exposure of DOM to biodegradation and photodegradation, resulting in a downstream decline in DOM reactivity (Koehler et al., 2012; Catalán et al., 2016).

Despite the wide use of the river continuum in studying various riverine processes, it has been criticized for overlooking an increasingly recognized reality that specific rivers...
are often divided into discrete segments that are hierarchically nested in a river network (Townsend, 1996; Poole, 2002). Discrete segments along a river network can occur as a result of “abrupt transitions between adjacent segments with dissimilar physical structure” within the hierarchically nested river network (Poole, 2002). These abrupt transitions between discrete segments can occur temporarily, as illustrated by seasonal variations in water connectivity (Casas-Ruiz et al., 2016). As depicted in Fig. 2, examples of human-induced discontinuities include those created by dams built on regulated rivers (Ward and Stanford, 1983) and pollution-induced perturbations to the production–respiration balance in the eutrophic river (Kempe, 1984; Garnier and Billen, 2007). Because the river continuum concept was originally proposed as a template for integrating physical environments and biological processes of “natural, unperturbed stream ecosystems” (Vannote et al., 1980), it has limitations in explaining discontinuities in fluvial processes and biogeochemical fluxes, which might be accentuated in many anthropogenically modified Asian river systems.

River impoundments and water withdrawal alter not only the rates of runoff and sediment transport (Svyitski et al., 2005) but also aquatic primary production and its effects on OM biodegradation (Stanley et al., 2012). In response to disturbance events, unregulated rivers tend to reset physical and ecological conditions toward the pre-disturbance state. However, river impoundment induces long-lasting perturbations to those conditions along the distance upstream or downstream of a dam, termed “discontinuity distance” (Ward and Stanford, 1983; Stanford and Ward, 2001). This discontinuity distance was originally proposed as part of the “serial discontinuity concept”, which states that stream regulation by multiple dams results in “an alternating series of lentic and lotic reaches” (Ward and Stanford, 1983). According to this concept, stream regulation by dams can induce disturbances to the gradual processes envisaged in the river continuum concept, shifting a given physical or biological parameter longitudinally (Ward and Stanford, 1983). For example, Vannote et al. (1980) envisaged that parameters such as the ratio of production to respiration (P/R) and diel temperature difference (ΔT) would exhibit a specific longitudinal pattern shown in Fig. 2. Stream regulation can shift this longitudinal pattern along the discontinuity distance. Although the serial discontinuity concept has been a useful framework for assessing anthropogenic impacts on regulated lotic systems, its presuppositions, including no disturbances other than impoundment (Ward and Stanford, 1983), limit its application to investigating environmental stresses other than impoundments, such as the high levels of organic pollutants and nutrients observed in many Asian rivers receiving untreated sewage and urban runoff.

Kaushal and Belt (2012) proposed an urban watershed continuum framework that recognizes a continuum linking engineered and natural hydrologic flow paths across the urbanized watershed. From the perspective of spatial discontinuity within the hierarchically nested river network (Poole, 2002), this urban watershed continuum is actually “a continuum with discontinuities” (sensu Poole, 2002), in which the natural land–water hydrologic connectivity common in low-order streams is replaced by urban structures such as sewers and storm water drains. The lateral transfer of water and associated materials via networks of engineered urban structures not only creates departures from the natural patterns or “discontinuities” in the hydrologic paths across the terrestrial–aquatic interface, but also exerts extraordinary impacts on the downstream transport and transformations of OM and nutrients (Paul and Meyer, 2001; Allan, 2004; Garnier and Billen, 2007; Lookingbill et al., 2009; Kaushal and Belt, 2012). As Hynes (1975) emphasized the importance of the terrestrial–aquatic connectivity in headwater systems by saying that “the valley rules the stream”, human-induced changes in the watershed would have large cascading effects on the structure and function of stream ecosystems. In human-modified river systems, the “valley” is often separated from the stream or replaced by engineered structures that release pulses of water and materials, creating abrupt transitions across the land–water interface and stream segments (Fig. 2). Urban structures across the land–water interface can also result in pulsatile flows of water and materials as a combined consequence of increased runoff from the impervious urban surface and discharges from WWTPs, storm water drainages, and combined sewer overflows (Paul and Meyer, 2001; Garnier and Billen, 2007; Kaushal and Belt, 2012). Although wastewater can bring pulses of OM and nutrients to the receiving urban water systems, its impact on riverine metabolism and CO2 outgassing has rarely been investigated in Asian river systems except for a few exploratory studies (Guo et al., 2014; Yoon et al., 2017).

Human-modified river networks often lack dynamic movements and flow adjustment and are therefore limited in their ability to buffer against disturbances such as floods and water stress (Palmer et al., 2008). Given the large seasonality inherent in the monsoon climate, anthropogenic land-waterscapes forming on monsoonal Asian river systems might be particularly vulnerable to climatic variability and extremes, as exemplified by the strengthened flashy storm responses of sediment and C export from erosion-prone mountainous watersheds during extremely wet monsoon periods (Park et al., 2010; Jung et al., 2012). Climate models have suggested that perturbations in the global water cycle accompanying climatic warming can increase river discharge in many parts of the world (Milly et al., 2005). Although increases in river discharge have been detected for some large basins over the last century (Labat et al., 2004), globally no consistent pattern has been established. For example, cumulative discharge from many midlatitude rivers, including rivers draining arid regions of Asia, have decreased substantially as a result of concurrent changes in precipitation and anthropogenic perturbations such as damming, irrigation, and inter-basin water transfers (Milliman et al., 2008). While discharge from most
Asian rivers except Siberian rivers and the Brahmaputra has declined, the most striking decrease exceeding -50% was observed for the Indus and Yellow River (Milliman et al., 2008). In many dammed Asian rivers, observed decreases in discharge and sediment transport might be largely explained by increasing river impoundments and water diversion (Milliman et al., 2008; Li and Bush, 2015a). However, recent increases in the frequency and intensity of extreme precipitation events observed in many parts of Asia (Min et al., 2011) suggest that potential changes in monsoon rainfall regimes as a consequence of climate change can amplify seasonal and year-to-year variations in discharge and the transport of sediment and C even in dammed river systems. Therefore, predicting future changes in riverine C fluxes in increasingly human-modified Asian river systems would require a better understanding of the complex interplay between anthropogenic perturbations and the concurrent climate change.

4 Contrasting effects of river impoundment on organic C transport and CO$_2$ emission

According to a recent estimate based on the Global Reservoir and Dam database (GRanD), there may be about 16.7 million reservoirs larger than 0.01 ha globally, with a combined storage capacity of 8069 km3 (Lehner et al., 2011). Out of 6862 dams registered in GRanD with a total storage capacity of 6197 km3, 1906 dams located in Asia (excluding middle eastern Asia and western Russia) store 1625 km3 of water, accounting for 26% of the global storage capacity. AQUASTAT, a global water information system operated by the Food and Agriculture Organization (FAO), provides a similar estimate for the reservoir storage capacity of southern and eastern Asia: 1325 km3 (Table 2; FAO, AQUASTAT). Over the last decades, rivers across Asia have been increas-ingly impounded by dams of various types and sizes, and a recent boom in constructing hydroelectric dams is posing an unprecedented challenge for the sustainable management of the affected river basins (Grumbine et al., 2012; Winemiller et al., 2016). River impoundments not only affect downstream flows but also disrupt the ecological and biogeochemical connectivity of rivers (Lehner et al., 2011; Winemiller et al., 2016; Maavara et al., 2017). A growing number of dams have been decreasing both river flow and sediment fluxes, sequestering over 100 billion metric tons of sediment and 1 to 3 billion metric tons of C in reservoirs constructed over the last 50 years (Syvitski et al., 2005). Many Asian rivers, such as the Indus, Yangtze, and Yellow, have seen the largest reductions in sediment export to the oceans compared to the pre-dam era (Syvitski et al., 2005). Therefore, investigating altered rates of C storage and losses in dammed Asian rivers is crucial for a better understanding of human impacts on global riverine C fluxes.

The Yellow River in northern China provides an excellent example of basin-scale impoundment impacts on sediment and C transport (Fig. 3). The sediment load in the Yellow River peaked during the period 1800–1950 following a millennium of aggravating soil erosion in the Loess Plateau, but dam construction and other human activities to control soil erosion have reduced the annual sediment flux by 90% over the last 60 years (Chen et al., 2015; Wang et al., 2015). Particularly, silt check dams and reservoirs, along with hillslope soil conservation measures such as terrace farming, made large contributions to the observed reductions. More than 110 000 silt check dams have been constructed in the Loess Plateau since the 1950s, trapping approximately 21 billion tons of sediment in the reservoirs (Zhang et al., 2016). A conservative estimate indicates that the rate of annual POC trapping in more than 3000 large dams (exclud-
Table 2. Summary of water use and wastewater production in southern and eastern Asia. Source of data: AQUASTAT, a global water information system operated by the Food and Agriculture Organization (FAO; http://www.fao.org/nr/water/aquastat/sets/index.stm; last access: 15 December 2017).

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
<th>Renewable surface water</th>
<th>Dam capacity</th>
<th>Municipal water</th>
<th>Municipal wastewater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2015) km3 yr$^{-1}$</td>
<td>km3</td>
<td>Year</td>
<td>km3 yr$^{-1}$</td>
<td>Year</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>160 996</td>
<td>1206.0</td>
<td>6.5</td>
<td>2013</td>
<td>3.6</td>
</tr>
<tr>
<td>Bhutan</td>
<td>775</td>
<td>78.0</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Brunei</td>
<td>423</td>
<td>8.5</td>
<td>0.0</td>
<td>2010</td>
<td>0.2</td>
</tr>
<tr>
<td>Cambodia</td>
<td>15 578</td>
<td>471.5</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>China</td>
<td>1 407 306</td>
<td>2739.0</td>
<td>829.8</td>
<td>2013</td>
<td>75.0</td>
</tr>
<tr>
<td>North Korea</td>
<td>25 155</td>
<td>76.2</td>
<td>13.6</td>
<td>2015</td>
<td>0.9</td>
</tr>
<tr>
<td>India</td>
<td>1 311 051</td>
<td>1869.0</td>
<td>224.0</td>
<td>2005</td>
<td>56.0</td>
</tr>
<tr>
<td>Japan</td>
<td>126 573</td>
<td>420.0</td>
<td>29.0</td>
<td>1993</td>
<td>15.4</td>
</tr>
<tr>
<td>Laos</td>
<td>6082</td>
<td>333.5</td>
<td>7.8</td>
<td>2010</td>
<td>0.1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>30 331</td>
<td>566.0</td>
<td>22.5</td>
<td>2015</td>
<td>3.9</td>
</tr>
<tr>
<td>Mongolia</td>
<td>2959</td>
<td>32.7</td>
<td>0.3</td>
<td>2015</td>
<td>0.1</td>
</tr>
<tr>
<td>Myanmar</td>
<td>53 897</td>
<td>1157.0</td>
<td>15.5</td>
<td>2005</td>
<td>3.3</td>
</tr>
<tr>
<td>Nepal</td>
<td>28 514</td>
<td>210.2</td>
<td>0.1</td>
<td>2015</td>
<td>0.0</td>
</tr>
<tr>
<td>Pakistan</td>
<td>188 925</td>
<td>239.2</td>
<td>27.8</td>
<td>2015</td>
<td>9.7</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>7619</td>
<td>801.0</td>
<td>0.7</td>
<td>2010</td>
<td>0.2</td>
</tr>
<tr>
<td>Philippines</td>
<td>100 699</td>
<td>444.0</td>
<td>6.3</td>
<td>2006</td>
<td>6.2</td>
</tr>
<tr>
<td>South Korea</td>
<td>50 293</td>
<td>67.1</td>
<td>16.2</td>
<td>1994</td>
<td>6.9</td>
</tr>
<tr>
<td>Singapore</td>
<td>5619</td>
<td>0.1</td>
<td>0.1</td>
<td>2015</td>
<td>1.1</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>20 715</td>
<td>52.0</td>
<td>5.9</td>
<td>1996</td>
<td>0.8</td>
</tr>
<tr>
<td>Thailand</td>
<td>67 959</td>
<td>427.4</td>
<td>68.3</td>
<td>2010</td>
<td>2.7</td>
</tr>
<tr>
<td>Timor</td>
<td>1185</td>
<td>8.1</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Vietnam</td>
<td>93 448</td>
<td>847.7</td>
<td>28.0</td>
<td>2010</td>
<td>1.2</td>
</tr>
<tr>
<td>S, SE, and E Asia</td>
<td>3 964 386</td>
<td>14027.1</td>
<td>1325.2</td>
<td>2013</td>
<td>201.6</td>
</tr>
<tr>
<td>World</td>
<td>7 344 837</td>
<td>52 952.7</td>
<td>7039.6</td>
<td></td>
<td>464.1</td>
</tr>
</tbody>
</table>

As illustrated by the relatively high estimated rate (27%) of CO$_2$ emission from the POC eroded from the entire Yellow River basin (Ran et al., 2014; Fig. 3), the organic C trapped in reservoir and stream sediments can become an important source of CO$_2$ under favorable conditions that would accelerate the rate of the biodegradation of POC during fluvial transport and sediment storage. Although the rate of CO$_2$ evasion from the water surface can increase in the impounded river reaches, as longer residence times tend to create favorable environments for the microbial biodegradation of organic C (Ittekkot et al., 1985; Ran et al., 2015a), the countering effect of enhanced planktonic CO$_2$ uptake in the euphotic reservoir surface has rarely been compared against biodegradation (refer to the wide range of ρCO$_2$ summarized in Table 3). Based on extensive CO$_2$ evasion measurements in the river–reservoir–river continuum on the Loess Plateau, Ran et al. (2017a) found that the Loess Plateau reservoirs acted as relatively small sources or even sinks of C due largely to significantly reduced surface turbulence and enhanced photosynthesis. Compared to the standing waters of the reservoirs with enhanced primary production, rapidly flowing wa-
Table 3. Summary of pCO$_2$ measured (M) or estimated (E) for the rivers in South (S), Southeast (SE), and East (E) Asia in comparison with data for the global rivers including Asian rivers. Only a single value per site was used to obtain the mean and range of each Asian river system, so multiple measurements at a site were averaged to provide one representative value.

<table>
<thead>
<tr>
<th>River system</th>
<th>Mean (range) of pCO$_2$ (µatm)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
<td>E</td>
<td>Raymond et al. (2013), Lauerwald et al. (2015), Marx et al. (2017), GLORICH*</td>
</tr>
<tr>
<td>Asia (total)</td>
<td>1754 (28–11 793) 1263 (35–10 977) 1170 (74–5076) 2116 (28–11 793) 835 (128–8785)</td>
<td></td>
<td>Sum of freshwater data below</td>
</tr>
<tr>
<td>S Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganges</td>
<td>893 (65–2620) 1083 (65–2184) 401 (165–1222) 1685 (1035–2620) 181, 224'E</td>
<td>E/M</td>
<td>Manaka et al. (2015b), GLORICH*</td>
</tr>
<tr>
<td>Brahmaputra</td>
<td>664 (28–6706) 494 (65–6706) 292 (208–513) 758 (28–3678)</td>
<td>E</td>
<td>Huang et al. (2011), Manaka et al. (2015b), Qu et al. (2017), GLORICH*</td>
</tr>
<tr>
<td>Indus</td>
<td>853 (117–7725) 941 (117–7725) 768 (165–3161)</td>
<td>E</td>
<td>Marx et al. (2017), GLORICH*</td>
</tr>
<tr>
<td>Krishna</td>
<td>2152 (711–4098) 1871 (711–2536) 2305 (165–2016)</td>
<td>E</td>
<td>GLORECH*</td>
</tr>
<tr>
<td>Godavari</td>
<td>8785'd</td>
<td>E</td>
<td>Prasad et al. (2013)</td>
</tr>
<tr>
<td>Bhote Kosi</td>
<td>592 (35–5907) 592 (35–5907)</td>
<td>E</td>
<td>Panneer Selvam et al. (2014)</td>
</tr>
<tr>
<td>Various</td>
<td>2685 (420–10 977) 3081 (426–10 977)</td>
<td>E/M</td>
<td>Gupta et al. (2009) (saline estuary)</td>
</tr>
<tr>
<td>Cochin</td>
<td>(2973–6001)'</td>
<td>E</td>
<td>Sarma et al. (2012) (saline estuary)</td>
</tr>
<tr>
<td>SE Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekong</td>
<td>1235 (110–4503) 1120 (703–1687) 1367 (110–4503) 1310 (864–899) 882'E</td>
<td>E/M</td>
<td>Amin et al. (2011), Li et al. (2013b), Manaka et al. (2015a)</td>
</tr>
<tr>
<td>Irrawaddy</td>
<td>2007 (1222–3157) 2814 (925–5076) 3357 (2632–2996) 3357 (925–5076)</td>
<td>E</td>
<td>Manaka et al. (2015a)</td>
</tr>
<tr>
<td>Chao Phraya</td>
<td>3202 (925–5076) 2814 (925–5076) 3357 (2632–2996) 3357 (925–5076)</td>
<td>E</td>
<td>Manaka et al. (2015a)</td>
</tr>
<tr>
<td>Indonesian rivers</td>
<td>5262 (2400–8555) 5262 (2400–8555)</td>
<td>M</td>
<td>Wit et al. (2015)</td>
</tr>
<tr>
<td>E Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>2164 (147–9659) 2104 (582–4770) 1083 (147–3546) 2470 (425–9659) 555, 441'h</td>
<td>E/M</td>
<td>Ran et al. (2015), Ran et al. (2017a)</td>
</tr>
<tr>
<td>Yangtze</td>
<td>2366 (74–7718) 1322 (528–3800) 794 (74–4472) 2680 (249–7718) 1393 (760–1908) 1393 (282–4808)</td>
<td>E</td>
<td>Qu et al. (2015), Liu et al. (2016), Ran et al. (2017b), GLORICH*</td>
</tr>
<tr>
<td>Pearl River</td>
<td>1747 (231–5006) 2465 (2136–2833) 1671 (231–5006) 1967 (282–4808)</td>
<td>E</td>
<td>Yao et al. (2007), Zhang et al. (2009), Zou (2016), GLORICH*</td>
</tr>
</tbody>
</table>

* GLORICH: Global River Chemistry Database (Hartmann et al., 2014), from which pCO$_2$ for global rivers was calculated by Raymond et al. (2013; excluding data obtained at pH < 5.4) and Lauerwald et al. (2015) excluding data obtained high pollution levels. Marx et al. (2017) excluded pCO$_2$ values above 100 000 µatm to avoid any potential overestimation resulting from pH and alkalinity effects. The mean and range were calculated from the data set (GLORICH and additional literature data) of pCO$_2$ measured or estimated for streams draining small watersheds < 20 km2 (Marx et al., 2017). Dakpathar Barrage on the Yamuna, a Ganges tributary (cf. the other barrage at Rishikesh on the main stem), using the headspace equilibration method (Park, unpublished data). Dowleswaram Reservoir (only the mean of time series data was included in calculating the regional mean and range). Cochin estuary: 2 sites on the Periyar River and 11 sites on the estuary. Measured at Lancang headwater at Qinghai, China using the headspace equilibration method (Park, unpublished data). Impounded tributaries of the lower Mekong (Li et al., 2013b). Impoundments on a Yellow River tributary (Ran et al., 2017a). Ran et al. (2017b) excluded pCO$_2$ values calculated at pH < 6.5.
ters along both the upstream and downstream reaches were larger C sources for the atmosphere, exhibiting much higher pCO_2 levels and faster flow velocities, which provide favorable conditions for an efficient gas evasion from the aqueous boundary layer. Liu et al. (2016) also observed over 60 % decreases in pCO_2 along the eutrophic impounded reaches of the Three Gorge Reservoir in the Yangtze River, but they argued that enhanced primary production in the impounded reach would play a rather temporary and minor role in controlling pCO_2 dynamics compared to the predominant influence of allochthonous C. The contrasting impoundment effects observed in the Yellow River and other Chinese rivers suggest that a basin-wide assessment of impoundment impacts on sediment C storage and CO_2 emissions should take into consideration concurrent changes in primary production and organic matter biodegradation.

In the Lancang River (the upper Mekong River located in China), Li et al. (2013a) observed dramatic increases in the abundance of phytoplankton and a shift of the algal community toward Chlorophyta and Cyanophyceae following the construction of cascade dams since 1995. In a recent study that compared the emission rates of CO_2 and CH_4 across the upper riverine reach and six cascade dams along the Lancang River, Shi et al. (2017) found that gas emission rates, particularly those of CH_4, were highest in the most upstream and second newest dam and that the percent of organic C in the reservoir bottom sediment had decreased with the increasing age of the dams. These results suggest that favorable conditions created by river impoundments, such as increased water temperature and retention time, can stimulate OM processing in both the impounded water and trapped sediments, at least in the short term following the construction of dams on high-POC mountainous rivers such as the Lancang.

Most major Indian rivers have been impounded by dams of various types and sizes to meet domestic and industrial water demands during the dry period. Because monsoonal rivers draining the Indian subcontinent account for the largest share of the POC export by the Asian rivers (Ludwig et al., 1996; Galy et al., 2015), altered discharges and sediment fluxes of these dammed rivers can have significant implications for the global riverine export of sediment and POC (Ittekott et al., 1985; Krishna et al., 2015). However, the effects of large dams on riverine C fluxes including CO_2 have been studied only in a few dammed rivers such as the Godavari (Sarma et al., 2011; Prasad et al., 2013; Table 3). According to an earlier study conducted in the Krishna, dam construction had decreased the sediment load from 67.7 Tg yr$^{-1}$ measured at the upper reach to 4.11 Tg yr$^{-1}$ at the river mouth (Ramesh and Subramanian, 1988). Although many large dams and barrages have been constructed on the main stem and tributaries of the Ganges, there has been no systematic investigation of GHG emissions from the impounded reaches, except for a few unpublished measurements (Table 3). Because of this paucity of monitoring data, GHG emissions from impounded rivers add a considerable uncertainty to the estimates of GHG emissions from the inland water systems in the Indian subcontinent. For instance, Panneer Selvam et al. (2014) extrapolated their flux measurements at 45 water bodies in South India to estimate CO_2 and CH_4 emissions from all of India’s inland waters at 22.0 Tg CO_2 and 2.1 Tg CH_4 yr$^{-1}$, respectively. While they provided estimates of 2.37 Tg CO_2 and 0.33 Tg CH_4 yr$^{-1}$ for the reservoirs and barrages, a follow-up study offered larger estimates amounting to 3.08 Tg CO_2 and 6.27 Tg CH_4 yr$^{-1}$ by considering additional literature data on large rivers in northern India and reservoir downstream fluxes through spillways and turbines (Li and Bush, 2015b). This example illustrates the importance of adequate spatial coverage and downstream impacts for refining regional-level estimates of GHG emissions from various impoundments.

A significant reduction in primary production observed in the Godavari River was ascribed to the removal of nitrogen and phosphorus by several dams constructed within the basin (Das, 2000). Ramesh et al. (2015) reported an increasing retention of particulate OM in the dams and reservoirs of the Godavari and Krishna. However, other studies conducted in the Godavari estuary have found that during the peak discharge periods in the monsoon season, the estuary receiving discharge waters from an upstream dam exhibited extraordinarily high levels of pCO_2 up to 33 000 µatm compared to the dry season values lower than 500 µatm, presumably due to enhanced bacterial decomposition of the organic C released from the upstream dam in the highly eutrophic estuary (Sarma et al., 2011; Prasad et al., 2013). On the other hand, less rainfall during dry years can also result in large downstream impacts of impoundments through an increased production of labile OM by freshwater algae in the upstream dam and algal blooms in the estuary (Pradhan et al., 2014). Further research is required to establish how seasonal and interannual variations in climatic and trophic conditions in dammed Indian rivers alter the balance between autotrophy and heterotrophy and hence CO_2 emissions along the “discontinuous” river–reservoir–estuary continuum as found in the Godavari basin.

In accordance with the serial discontinuity concept (Ward and Standford, 1983; Fig. 2), multiple dams constructed on large Asian rivers such as the Mekong and Yellow River create standing water conditions that may shift stream metabolisms and pCO_2 dynamics from the patterns observed for freely flowing reaches. The observed contrasting impoundment effects on CO_2 emissions across different Asian river systems might have resulted from an interplay between planktonic CO_2 uptake, organic matter biodegradation, and sediment C sequestration (Liu et al., 2016; Maavara et al., 2017). The balance between the competing processes affecting the actual level of pCO_2 in reservoir waters may change not only seasonally (Prasad et al., 2013; Liu et al., 2016) but also with the increasing age of dams (Barros et al., 2011). While large pulses of GHGs may be released from the flooded vegetation and soil OM during the initial flooding phase (Abril et al., 2005; Chen et al., 2009; Hu and Cheng,
2013; Deshmukh et al., 2016, 2018), sedimentation can accumulate a growing amount of C in reservoir sediments, greatly decreasing the rate of CO$_2$ release from aging reservoirs (Barros et al., 2011). Large pulse emissions of CO$_2$ and CH$_4$ have been measured in the years following the construction of the Three Gorges Dam on the Yangtze River (Chen et al., 2009) and the Nam Theun 2 on the large tributary feeding into the middle reach of the Mekong River (Deshmukh et al., 2016, 2018). A recent report on drought-enhanced emissions of GHGs in an old hydroelectric reservoir in Korea suggested that stochastic emissions during extreme climatic events can reverse the trend of declining C emissions from aging reservoirs through the offsetting effect of extreme events on the C accumulated in reservoir sediments over timescales of years to decades (Jin et al., 2016). The paucity of pCO$_2$ measurements in dammed Asian rivers (Table 3; Fig. 4) does not allow for any generalization of long-term impoundment effects on sediment C storage and CO$_2$ emissions; this requires more long-term investigations of seasonal and year-to-year variations in metabolic processes and pCO$_2$ levels across a wide range of impounded inland water systems.

5 Effects of water pollution on riverine metabolisms and CO$_2$ emissions

Across Asia, rapidly urbanizing river basins are highly polluted with poorly treated or untreated wastewater. Using AQUASTAT data, Evans et al. (2012) estimated the annual wastewater generation in Asia around the year 2000 at 142 km3, of which only an estimated 33–35% was treated before being discharged to streams and rivers. We used the latest data available on the AQUASTAT webpage to provide more up-to-date estimates of water withdrawal and wastewater production, focusing on southern and eastern Asia (FAO, AQUASTAT). In 2010, the annual municipal water withdrawal in 24 southern and eastern Asian countries was 201.6 km3, accounting for 43.4% of the global municipal withdrawal (464.1 km3; Table 2). The total volume of municipal wastewater generated each year within urban areas of these countries was 120.2 km3. The generated wastewater included domestic, commercial, and industrial effluents and storm water runoff, accounting for 38.6% of the global municipal wastewater production (311.6 km3).

Based on the AQUASTAT and other published data, Mateo-Sagasta et al. (2015) estimated that each year more than 330 km3 of municipal wastewater is produced globally. Although the volume of municipal wastewater generated constitutes only \sim0.9% of the renewable surface water available in these Asian regions (14 027.1 km3), both poorly treated and untreated wastewater can have disproportionately large impacts not only on the water quality and ecological integrity of downstream aquatic ecosystems (Meybeck and Helmer, 1989; Evans et al., 2012) but also on the riverine GHG emissions (Yoon et al., 2017).

Compared to extensive studies conducted in polluted rivers and estuaries in Europe and North America (Frankignoulle et al., 1998; Borges et al., 2006; Hartmann et al., 2007; Borges and Abril, 2011; Griffith and Raymond, 2011; Amann et al., 2012; Joesoef et al., 2015), few efforts have been made to
measure \(p\text{CO}_2 \) in polluted Asian rivers, except for some large rivers and estuaries in East Asia (Zhai et al., 2005; Chou et al., 2013; Ran et al., 2015b; Yoon et al., 2017). These studies, together with a small number of studies that used water chemistry data to estimate \(p\text{CO}_2 \) levels in major Asian rivers such as the Mekong (Li et al., 2013b), the Yangtze (Ran et al., 2017b), the Ganges-Brahmaputra (Manaka et al., 2015b), and Indian estuaries (Gupta et al., 2009; Sarma et al., 2012), underscored the importance of anthropogenic OM and nutrients for riverine \(\text{CO}_2 \) dynamics, particularly along lower river reaches and estuaries draining highly populated areas. When published data on \(p\text{CO}_2 \) were compared between headwater streams and tributaries feeding into the middle and lower reaches of major Asian rivers, tributary \(p\text{CO}_2 \) levels (mean: 2116 µatm) tended to be higher than those for headwaters of Asian rivers (mean: 1170 µatm; Table 3; Fig. 4). The ranges of \(p\text{CO}_2 \) in the three river systems reviewed in detail also differed between headwaters and lower main stem reaches and their tributaries, displaying some river-specific patterns as described in the following paragraphs.

With the basin-wide average \(p\text{CO}_2 \) around 2164 (147–9659) µatm (Table 3), the Yellow River has been evaluated as a source of \(\text{CO}_2 \) for the atmosphere (Ran et al., 2015a, b, 2017a; Fig. 3). The total emission of \(\text{CO}_2 \) from the basin-wide fluvial network was estimated at 4.7–7.9 Tg yr\(^{-1}\), with >70% emitting from the tributaries draining the Loess Plateau (Ran et al., 2014, 2015b; Fig. 3). In recent decades water pollution has become an increasingly important watershed management issue for the basin inhabited by a population >100 million, particularly in the middle and lower reaches flanked by large industrial complexes and irrigated farmlands (Li et al., 2006; Zhang et al., 2013; Lu et al., 2015). Drainage waters from croplands containing high loads of OM have increased DOC concentrations in the middle reach of the Yellow River, while wastewater discharged from large regional population centers has been evaluated as the major source of DOC and POC in the lower reach, particularly in winter (Zhang et al., 2013). As a combined result of higher loads of pollutants discharged from local sources to tributaries and higher flow diluting pollutant concentrations in the main stem, tributaries appear to be more polluted than the mainstem Yellow River, exhibiting the highest levels of \(p\text{CO}_2 \) among the three compared river systems (Fig. 4). Higher concentrations of DOC and POC in more polluted lower reaches and their tributaries might lead to enhanced in-stream biodegradation of allochthonous C by labile OM fractions of anthropogenic origin but altered rates of biodegradation and primary production have not yet been measured in any reach of the Yellow River. Along with the question about impoundment effects on sediment C, the role of organic pollution in riverine metabolisms and \(\text{CO}_2 \) emissions along lower reaches is crucial for understanding the fate of organic C derived from various sources in the Yellow River basin, including C stocks stored in reservoir and floodplain sediments.

It is very difficult to evaluate the overall pollution impacts on \(\text{C} \) dynamics of the main stem Mekong River, as measurements of the nutrient and C cycles have been made for short reaches of the lower Mekong in Laos and Cambodia (Alin et al., 2011; Ellis et al., 2012; Martin et al., 2013) and in the Mekong Delta (Borges et al., 2018). The annual DIC flux of the Mekong was estimated at 3.95 Tg, with DIC and alkalinity both negatively correlated with discharge (Jeffrey E. Richey, unpublished data). This trend, which has also been observed in the Pearl (Zhang et al., 2007) and Yellow River (Ran et al., 2015a), has been attributed to the dominance of a weathering-based source in the dry season that is diluted by less ion-rich rainwater during the high-flow periods (Cai et al., 2008). The mean reported \(p\text{CO}_2 \) value for the lower Mekong River is 1235 µatm (Table 3). Using a model based on pH and alkalinity, Li et al. (2013b) reported a similar mean \(p\text{CO}_2 \) for the lower Mekong: 1090 (224–5970) µatm. Alin et al. (2011) measured similar values (~1200 µatm) at eight main stem locations in Laos and Cambodia. The seasonal trend in \(p\text{CO}_2 \) opposes the alkalinity and DIC trends, peaking in the flood season and being lowest in the dry season, similar to several previous studies in tropical river systems (Sarma et al., 2011; Borges et al., 2018). The level of \(p\text{CO}_2 \) in the lower Mekong tends to increase downstream, with an average of 812 µatm near Chiang Saen, Thailand increasing toward 1670 µatm in the Mekong Delta (Li et al., 2013b). The potential effects of polluted tributaries on main stem \(\text{CO}_2 \) emissions were indicated by high \(p\text{CO}_2 \) values approaching 2000–3000 µatm in tributaries draining highly populated areas such as the Tonle Sap near Phnom Penh and local tributaries feeding into the Mekong Delta (Li et al., 2013b; Table 3). In Phnom Penh, a combined drainage system delivers untreated municipal wastewater and storm runoff either directly or through four natural wetlands surrounding the city used for natural purification to the Tonle Sap and Mekong (Irvine et al., 2006). Measurements of \(p\text{CO}_2 \) along three freshwater channels in the Mekong Delta ranged between 1895 and 2664 µatm during the high-flow periods of December 2003 and October 2004 (Borges et al., 2018) and exceeded the range of 703–1597 µatm observed in the upstream reach during a similar period (September–October 2004 and 2005) by Alin et al. (2011). As suggested by Borges et al. (2018), anthropogenic pollution sources in the densely populated and cultivated areas along lower reaches may release more \(\text{CO}_2 \) and biodegradable OM compared to the upstream reach.

As summarized in Table 3, many studies of aquatic \(\text{CO}_2 \) dynamics in India have been conducted in estuaries and coastal areas (Mukhopadhyay et al., 2002; Biswas et al., 2004; Gupta et al., 2009; Sarma et al., 2012; Samanta et al., 2015), except for the secondary data on \(p\text{CO}_2 \) calculated using C system equations (Pierrot et al., 2006) and water quality data collected in various headwaters (Sarin et al., 1989;
The values of pCO_2 estimated for some headwaters, lower reaches, and tributaries of the Ganges basin (mean: 893; range: 65–2620 µatm) were relatively low compared to other Asian rivers (Table 3; Fig. 4). In a study of the human impacts on C dynamics in the Cochin estuary in southern India, Gupta et al. (2009) ascribed monsoon and seasonality of pCO_2 increases of up to 6000 µatm to the enhanced decomposition of the OM released from anthropogenic sources upstream. Particular attention has been paid to the emission of CO_2 and CH_4 from the Indian part of the deltaic region of the Ganges-Brahmaputra system that includes estuaries with contrasting biogeochemical features: the anthropogenically impacted estuary of the Hooghly (the largest Indian distributary of the Ganges emptying into the Bay of Bengal) and the mangrove-dominated estuaries of Sundarbans, the world’s largest mangrove ecosystem (Mukhopadhyay et al., 2002; Biswas et al., 2004; Dutta et al., 2015; Samanta et al., 2015). The Hooghly estuary was found as net heterotrophic, with the fugacity of CO_2 (fCO_2) varying from ~400 to 700 µatm (Mukhopadhyay et al., 2002). On an annual scale, the Hooghly estuary acted as a source of CO_2 (2.78 to 84.4 mmol m$^{-2}$ d$^{-1}$) to the atmosphere (Mukhopadhyay et al., 2002). The estuaries of Sundarbans were reported as a source of CO_2 (314.6 mmol m$^{-2}$ d$^{-1}$) to the atmosphere (Dutta et al., 2015). Samanta et al. (2015) reported a large annual DIC export of $(3.1–3.7) \times 10^{12}$ g from the Hooghly estuary to the Bay of Bengal exceeding the input of DIC through the river (freshwater). They attributed the estuarine production of DIC to some biogeochemical processes within the estuary including OM biodegradation and carbonate dissolution. Drawing on wastewater discharge and DIC concentrations, Samanta et al. (2015) estimated that direct anthropogenic sources of DIC within the Hooghly basin might account for only 2–3% of the river water DIC concentrations. It remains unclear how much the biodegradation of organic C released from anthropogenic sources could contribute to downstream DIC generation and CO_2 emissions in the Hooghly and other Indian estuaries.

The fact that in all three river systems pCO_2 tended to be higher along lower reaches and tributaries than in headwater streams (Table 3; Fig. 4) might seem contradictory to the findings of some recent global syntheses that compared pCO_2 levels between low-order streams and rivers (Lauerwald et al., 2015; Marx et al., 2017). These syntheses assumed that the stream pCO_2 level might be determined by the relative contributions from terrestrial processes such as soil respiration and weathering and in-stream processes including biodegradation and photodegradation. It follows that the contribution of terrestrial derived pCO_2 may overwhelm the in-stream contribution, at least in low-order streams and rivers, resulting in a general trend of downstream decreases in pCO_2. These assumptions, together with a finding of gradual downstream decline in the rate of the biodegradation of riverine OM due to an increasing dominance of recalcitrant components with increasing stream order and retention time (Catalán et al., 2016), are based on the river continuum concept and do not consider downstream variations in the consumption and replenishment of stream OM pools associated with enhanced algal production in impounded reaches and/or pulsatile inputs of anthropogenic OM delivered by urban streams as described in Fig. 2. In a global synthesis of data collected at 1182 sites, which did not include highly polluted river sites in Europe and the three Asian regions reviewed here, Lauerwald et al. (2015) found a slightly higher mean pCO_2 (2471 µatm) in streams and small rivers compared to the mean value for large rivers (2299 µatm). As Lauerwald et al. (2015) acknowledged, however, pCO_2 may continue to increase along the lower reaches of large rivers in response to inputs of labile OM and dissolved CO_2 from floodplains (Abril et al., 2014; Borges et al., 2015) and pollution sources in croplands and urban areas (Kempe, 1982; Frankignoule et al., 1998). Although it is very difficult to evaluate the relative contributions of autochthonous, soil-derived, and anthropogenic OM fractions to enhanced biodegradation along lower reaches, some studies have examined the effects of domestic and industrial wastewater on the chemical composition and lability of organic C in the riverine and estuarine waters of some polluted Asian rivers (Guo et al., 2014; Samanta et al., 2015). By comparing fluorescence excitation–emission matrices (EEMs) of DOM between the branches and tributaries of the Yangtze River estuary, Guo et al. (2014) found that labile DOM components delivered by the Huangpu River, a highly polluted tributary, exerted a disproportionately large influence on the biodegradability of DOM in the Yangtze estuary. These chemical analyses, together with direct underway measurements that revealed extraordinarily high pCO_2 levels along the polluted river and estuarine reaches of some Chinese rivers (Zhai et al., 2005; Chou et al., 2013; Wang et al., 2017), suggest that labile OM fractions of anthropogenic origin can boost the microbial processing of bulk riverine OM, enhancing CO_2 emissions from polluted waterways.

Unusually high pCO_2 levels observed in some eutrophic rivers and estuaries across the three Asian regions cannot be explained by widely used metabolic continuum models that would be more relevant for rather “natural” inland water systems (Hotchkiss et al., 2015; Catalán et al., 2016). Many studies conducted in polluted European rivers reported frequent occurrences of extreme algal blooms and altered metabolic rates in the eutrophic reaches that had rarely been observed in flowing water systems under minimal to low human influences (Meybeck and Helmer, 1989; Hilton et al., 2006; Garnier and Billen, 2007). A recent report on CO_2 outgassing from a highly urbanized river system in Korea suggested a potential regime shift in riverine metabolic processes by showing a shift in the relationship between Chl a and pCO_2 from the upstream reach less enriched in nutrients and CO_2 to the eutrophic downstream reach receiving...
dam construction across Asia seem to induce ever-increasing perturbations to riverine C fluxes, demanding more systematic assessments of impoundment impacts on riverine organic C transport and GHG emissions. Specifically, these assessments require a basin-wide examination of temporal variations in the rates of primary production and organic matter biodegradation in line with \(p\text{CO}_2 \) variations across impounded and upstream and downstream reaches along the "discontinuity distance" (Ward and Standford, 1983) to predict how impoundments alter the balance between autotrophy and heterotrophy and hence the air–water exchange of \(p\text{CO}_2 \) both in the short-term diel cycle and through seasonal and interannual variations. Long-term studies can also evaluate how frequent droughts associated with regional climate change can reverse the gradually decreasing GHG emissions from impounded river reaches through the enhanced decomposition of the C stored in the reservoir bottom sediment.

Although rapid urbanization across Asia is aggravating eutrophication and organic pollution in many large rivers draining metropolitan areas with a limited capacity for wastewater treatment infrastructure, the scarcity of high-quality monitoring data represents a huge challenge for a thorough assessment of the current status of riverine metabolisms and \(p\text{CO}_2 \) outgassing from the impacted rivers. Some exploratory studies conducted in highly urbanized watersheds in East Asia (e.g., Wang et al., 2017; Yoon et al., 2017) have questioned whether the conventional conceptual framework perceiving riverine C fluxes as a gradual longitudinal continuum can address the large cross-scale variations and pulsatile patterns of riverine \(p\text{CO}_2 \) outgassing observed in the highly modified river systems. Given the large share of the reviewed Asian regions (~40%) in global municipal wastewater production and disproportionately poor wastewater treatment infrastructure, it remains largely unknown whether our current understanding of biogeochemical processes in urban river systems in Europe and North America can help explain the idiosyncratic features of OM composition and turnover in streams and rivers contaminated with high loads of raw sewage and nutrients. Building on conceptual and mathematical models developed for highly eutrophic river sys-
tems in Europe and North America (e.g., Garnier and Billen, 2007), we need to develop new integrative frameworks to explain river-specific responses to the unprecedented pace and scale of urbanization and water pollution. These integrative frameworks need to consider concurrent multiple environmental changes, including dams and climatic variability, and extreme events as confounding factors that can either boost or dampen pollution-induced pulses of CO\textsubscript{2} emissions from highly polluted urban rivers. A key future challenge in predicting CO\textsubscript{2} emissions from highly polluted, eutrophic river systems would be to constrain shifting balances between interrelated riverine metabolic processes, as illustrated by the regime shift in the relationship between Chl a and pCO\textsubscript{2} observed between the less impacted upstream and eutrophic downstream reaches of a highly urbanized river system (Fig. 5).

How to overcome the overall scarcity and spatially uneven availability of high-quality data, guided by an integrative conceptual framework reflecting observed regional trends, might be the number one research priority in providing a scientifically robust assessment of the current status of the human impacts on C fluxes in Asian river systems. Given the inadequate research capacity in many developing Asian countries, more efforts should be given to build collaborative research networks that can provide researchers with practical guides and standardized methodologies for designing and conducting field monitoring of riverine C fluxes at multiple spatial and temporal scales. These efforts need to pay more attention to emerging local issues in addition to the common regional patterns associated with river impoundment and pollution. As observed in the Tibetan Plateau, urbanization and dam construction have been expanding to the upstream headwater reaches of large rivers such as the Mekong, Yangtze, and Yellow River. The rapid expansion of anthropogenic perturbations, coupled with idiosyncratic local climates and ecosystems, can amplify changes in riverine metabolic processes and C dynamics. To better assess the interactive effects of concurrent multiple environmental changes and human-induced perturbations to the riverine networks of interacting land and water patches, we suggest that the long-standing concept of river continuum assuming “natural” states should be critically examined by field measurements and complemented with alternative perspectives of “discontinuity” or “discontinuous continuity” (sensu Poole, 2002) in riverine metabolisms and C fluxes created in impounded and eutrophic reaches of rivers draining increasingly urbanizing watersheds across Asia and globally.

Data availability. Data are available and can be requested from the corresponding author (jhp@ewha.ac.kr).

Author contributions. All authors contributed to data acquisition, the discussion of concepts and research topics, and paper preparation. The paper was written through the concerted efforts of all authors and coordinated by JHP.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue “Human impacts on carbon fluxes in Asian river systems”. It is not associated with a conference.

Acknowledgements. This work was supported by the Asia-Pacific Network for Global Change Research (CRRP2016-01MY-Park) and the National Foundation of Korea (2017R1D1A1B06035179). We thank Tae Kyung Yoon for providing a figure modified from the Supplement to his publication and Dr. Gwenaël Abril and two anonymous reviewers for proving insightful comments on the paper.

Edited by: Gwenaël Abril
Reviewed by: two anonymous referees

References

