Volume 15, issue 1 | Copyright

Special issue: The Ocean in a High-CO2 World IV

Biogeosciences, 15, 209-231, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jan 2018

Research article | 11 Jan 2018

Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

Stacy Deppeler et al.
Related authors
Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691-3701, https://doi.org/10.5194/bg-15-3691-2018,https://doi.org/10.5194/bg-15-3691-2018, 2018
A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
Natasha A. Gafar and Kai G. Schulz
Biogeosciences, 15, 3541-3560, https://doi.org/10.5194/bg-15-3541-2018,https://doi.org/10.5194/bg-15-3541-2018, 2018
Ocean acidification changes the structure of an Antarctic coastal protistan community
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393-2410, https://doi.org/10.5194/bg-15-2393-2018,https://doi.org/10.5194/bg-15-2393-2018, 2018
The short-term combined effects of temperature and organic matter enrichment on permeable coral reef carbonate sediment metabolism and dissolution
Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Biogeosciences, 14, 5377-5391, https://doi.org/10.5194/bg-14-5377-2017,https://doi.org/10.5194/bg-14-5377-2017, 2017
Organic exudates promote Fe(II) oxidation in Fe limited cultures of Trichodesmium erythraeum
Hanieh T. Farid, Kai G. Schulz, and Andrew L. Rose
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-129,https://doi.org/10.5194/bg-2017-129, 2017
Manuscript not accepted for further review
Related subject area
Biodiversity and Ecosystem Function: Marine
Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep
Arunima Sen, Emmelie K. L. Åström, Wei-Li Hong, Alexey Portnov, Malin Waage, Pavel Serov, Michael L. Carroll, and JoLynn Carroll
Biogeosciences, 15, 4533-4559, https://doi.org/10.5194/bg-15-4533-2018,https://doi.org/10.5194/bg-15-4533-2018, 2018
The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification
Clara Jule Marie Hoppe, Clara M. Flintrop, and Björn Rost
Biogeosciences, 15, 4353-4365, https://doi.org/10.5194/bg-15-4353-2018,https://doi.org/10.5194/bg-15-4353-2018, 2018
Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance
Tanja Stratmann, Lidia Lins, Autun Purser, Yann Marcon, Clara F. Rodrigues, Ascensão Ravara, Marina R. Cunha, Erik Simon-Lledó, Daniel O. B. Jones, Andrew K. Sweetman, Kevin Köser, and Dick van Oevelen
Biogeosciences, 15, 4131-4145, https://doi.org/10.5194/bg-15-4131-2018,https://doi.org/10.5194/bg-15-4131-2018, 2018
Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago
Margaux Gourdal, Martine Lizotte, Guillaume Massé, Michel Gosselin, Michel Poulin, Michael Scarratt, Joannie Charette, and Maurice Levasseur
Biogeosciences, 15, 3169-3188, https://doi.org/10.5194/bg-15-3169-2018,https://doi.org/10.5194/bg-15-3169-2018, 2018
Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107-3119, https://doi.org/10.5194/bg-15-3107-2018,https://doi.org/10.5194/bg-15-3107-2018, 2018
Cited articles
Allgaier, M., Riebesell, U., Vogt, M., Thyrhaug, R., and Grossart, H.-P.: Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study, Biogeosciences, 5, 1007–1022, https://doi.org/10.5194/bg-5-1007-2008, 2008.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res.-Ocean., 113, C08004, https://doi.org/10.1029/2007JC004551, 2008a.
Arrigo, K. R., van Dijken, G. L., and Long, M.: Coastal Southern Ocean: A strong anthropogenic CO2 sink, Geophys. Res. Lett., 35, L21602, https://doi.org/10.1029/2008GL035624, 2008b.
Azam, F., Fenchel, T., Field, J. G., Gray, J. C., Meyer-Reil, L. A., and Thingstad, F.: The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10, 257–264, https://doi.org/10.3354/meps010257, 1983.
Azam, F., Smith, D. C., and Hollibaugh, J. T.: The role of the microbial loop in Antarctic pelagic ecosystems, Polar Res., 10, 239–243, https://doi.org/10.1111/j.1751-8369.1991.tb00649.x, 1991.
Publications Copernicus
Special issue
Short summary
We combined productivity and photophysiology measurements to investigate the effects of ocean acidification on a natural Antarctic marine microbial community. Our study identifies a threshold for CO2 tolerance in the phytoplankton community between 953 and 1140 μatm of CO2, above which productivity declines. Bacteria were tolerant to CO2 up to 1641 μatm. We identify physiological changes in the phytoplankton at high CO2 that allowed them to acclimate to the high CO2 treatment.
We combined productivity and photophysiology measurements to investigate the effects of ocean...