Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 15, issue 4
Biogeosciences, 15, 1173–1183, 2018
https://doi.org/10.5194/bg-15-1173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 1173–1183, 2018
https://doi.org/10.5194/bg-15-1173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Feb 2018

Research article | 27 Feb 2018

Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

Aaron M. Sparks et al.

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
An analysis of forest biomass sampling strategies across scales
Jessica Hetzer, Andreas Huth, Thorsten Wiegand, Hans Jürgen Dobner, and Rico Fischer
Biogeosciences, 17, 1673–1683, https://doi.org/10.5194/bg-17-1673-2020,https://doi.org/10.5194/bg-17-1673-2020, 2020
Short summary
Comparing stability in random forest models to map Northern Great Plains plant communities in pastures occupied by prairie dogs using Pleiades imagery
Jameson R. Brennan, Patricia S. Johnson, and Niall P. Hanan
Biogeosciences, 17, 1281–1292, https://doi.org/10.5194/bg-17-1281-2020,https://doi.org/10.5194/bg-17-1281-2020, 2020
Short summary
African biomes are most sensitive to changes in CO2 under recent and near-future CO2 conditions
Simon Scheiter, Glenn R. Moncrieff, Mirjam Pfeiffer, and Steven I. Higgins
Biogeosciences, 17, 1147–1167, https://doi.org/10.5194/bg-17-1147-2020,https://doi.org/10.5194/bg-17-1147-2020, 2020
Short summary
Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia
Jonathan R. Moore, Arthur P. K. Argles, Kai Zhu, Chris Huntingford, and Peter M. Cox
Biogeosciences, 17, 1013–1032, https://doi.org/10.5194/bg-17-1013-2020,https://doi.org/10.5194/bg-17-1013-2020, 2020
Short summary
Soil carbon release responses to long-term versus short-term climatic warming in an arid ecosystem
Hongying Yu, Zhenzhu Xu, Guangsheng Zhou, and Yaohui Shi
Biogeosciences, 17, 781–792, https://doi.org/10.5194/bg-17-781-2020,https://doi.org/10.5194/bg-17-781-2020, 2020
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Andela, N., Kaiser, J. W., van der Werf, G. R., and Wooster, M. J.: New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations, Atmos. Chem. Phys., 15, 8831–8846, https://doi.org/10.5194/acp-15-8831-2015, 2015.
Balshi, M. S., Mcguire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., and Melillo, J.: Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century, Glob. Chang. Biol., 15, 1491–1510, https://doi.org/10.1111/j.1365-2486.2009.01877.x, 2009.
Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A., and Stocks, B.: Climate change presents increased potential for very large fires in the contiguous United States, Int. J. Wildland Fire, 24, 892–899, https://doi.org/10.1071/WF15083, 2015.
Publications Copernicus
Download
Short summary
Through landscape-scale satellite observations we demonstrate that fire intensity has a dose–response relationship with temperate forest net primary productivity. Increasing fire intensity resulted in persisting step-wise reductions in post-fire net primary productivity. Forests with higher proportions of fire-resistant species generally had lower reductions in post-fire net primary productivity. A conceptual framework for assessing spatiotemporal post-fire effects is presented.
Through landscape-scale satellite observations we demonstrate that fire intensity has a...
Citation