Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 24 | Copyright
Biogeosciences, 14, 5741-5752, 2017
https://doi.org/10.5194/bg-14-5741-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Dec 2017

Research article | 21 Dec 2017

Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

Lei Jiang et al.
Related authors
Archive of bacterial community in anhydrite crystals from a deep-sea basin provides evidence of past oil-spilling in a benthic environment in the Red Sea
Yong Wang, Tie Gang Li, Meng Ying Wang, Qi Liang Lai, Jiang Tao Li, Zhao Ming Gao, Zong Ze Shao, and Pei-Yuan Qian
Biogeosciences, 13, 6405-6417, https://doi.org/10.5194/bg-13-6405-2016,https://doi.org/10.5194/bg-13-6405-2016, 2016
Related subject area
Earth System Science/Response to Global Change: Climate Change
Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape
Dominik Thom, Werner Rammer, Rita Garstenauer, and Rupert Seidl
Biogeosciences, 15, 5699-5713, https://doi.org/10.5194/bg-15-5699-2018,https://doi.org/10.5194/bg-15-5699-2018, 2018
Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287-5313, https://doi.org/10.5194/bg-15-5287-2018,https://doi.org/10.5194/bg-15-5287-2018, 2018
Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717-3729, https://doi.org/10.5194/bg-15-3717-2018,https://doi.org/10.5194/bg-15-3717-2018, 2018
Ocean acidification reduces mechanical properties of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis
Yuan Meng, Zhenbin Guo, Susan C. Fitzer, Abhishek Upadhyay, Vera B. S. Chan, Chaoyi Li, Maggie Cusack, Haimin Yao, Kelvin W. K. Yeung, and Vengatesen Thiyagarajan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-204,https://doi.org/10.5194/bg-2018-204, 2018
Revised manuscript accepted for BG
Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress
Jie Wang, Bayden D. Russell, Meng-Wen Ding, and Yun-Wei Dong
Biogeosciences, 15, 2803-2817, https://doi.org/10.5194/bg-15-2803-2018,https://doi.org/10.5194/bg-15-2803-2018, 2018
Cited articles
Allemand, D., Tambutté, É., Zoccola, D., and Tambutté, S.: Coral calcification, cells to reefs, in: Coral Reefs: an Ecosystem in Transition, edited by: Dubinsky, Z., and Stambler, N., Springer Netherlands, Dordrecht, 119–150, 2011.
Anlauf, H., D'Croz, L., and O'Dea, A.: A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative, J. Exp. Mar. Biol. Ecol., 397, 13–20, https://doi.org/10.1016/j.jembe.2010.11.009, 2011.
Babcock, R. and Mundy, C.: Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians, J. Exp. Mar. Biol. Ecol., 206, 179–201, 1996.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boyd, P. W., Cornwall, C. E., Davison, A., Doney, S. C., Fourquez, M., Hurd, C. L., Lima, I. D., and Mcminn, A.: Biological responses to environmental heterogeneity under future ocean conditions, Glob. Change Biol., 22, 2633–2650, https://doi.org/10.1111/gcb.13287, 2016.
Publications Copernicus
Download
Short summary
The negative effects of elevated temperature (31 °C) on larval settlement of P. damicornis was greatly tempered by diurnal temperature fluctuations, whilst diel oscillations in temperature reduced the heat stress on photo-physiology of coral recruits. Although elevated temperature greatly stimulated the growth of recruits, the daytime encounters with the maximum temperature of 33 °C in the fluctuating treatment elicited a notable reduction in calcification.
The negative effects of elevated temperature (31 °C) on larval settlement of P. damicornis was...
Citation
Share