Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 24
Biogeosciences, 14, 5727-5739, 2017
https://doi.org/10.5194/bg-14-5727-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 5727-5739, 2017
https://doi.org/10.5194/bg-14-5727-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Dec 2017

Research article | 20 Dec 2017

Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

Naohiro Kosugi et al.
Related authors  
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643-1661, https://doi.org/10.5194/bg-15-1643-2018,https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Related subject area  
Biogeochemistry: Coastal Ocean
High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea
Neus Garcias-Bonet, Marco Fusi, Muhammad Ali, Dario R. Shaw, Pascal E. Saikaly, Daniele Daffonchio, and Carlos M. Duarte
Biogeosciences, 15, 7333-7346, https://doi.org/10.5194/bg-15-7333-2018,https://doi.org/10.5194/bg-15-7333-2018, 2018
Short summary
Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer
Jørgen Bendtsen and Katherine Richardson
Biogeosciences, 15, 7315-7332, https://doi.org/10.5194/bg-15-7315-2018,https://doi.org/10.5194/bg-15-7315-2018, 2018
Short summary
On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study
Raphaël Savelli, Christine Dupuy, Laurent Barillé, Astrid Lerouxel, Katell Guizien, Anne Philippe, Pierrick Bocher, Pierre Polsenaere, and Vincent Le Fouest
Biogeosciences, 15, 7243-7271, https://doi.org/10.5194/bg-15-7243-2018,https://doi.org/10.5194/bg-15-7243-2018, 2018
Short summary
Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters
Antonio Fuentes-Lema, Henar Sanleón-Bartolomé, Luis M. Lubián, and Cristina Sobrino
Biogeosciences, 15, 6927-6940, https://doi.org/10.5194/bg-15-6927-2018,https://doi.org/10.5194/bg-15-6927-2018, 2018
Short summary
Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak, Borneo
Patrick Martin, Nagur Cherukuru, Ashleen S. Y. Tan, Nivedita Sanwlani, Aazani Mujahid, and Moritz Müller
Biogeosciences, 15, 6847-6865, https://doi.org/10.5194/bg-15-6847-2018,https://doi.org/10.5194/bg-15-6847-2018, 2018
Short summary
Cited articles  
Anderson, L. G., Jutterström, S., Kaltin, S., Jones, E. P., and Björk, G.: Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109, C01016, https://doi.org/10.1029/2003JC001773, 2004.
Anderson, L. and Sarmiento, J.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, 1994.
Aoyama, M. and Hydes, D. J.: How do we improve the comparability of nutrient measurements?, in: Comparability of Nutrients in the World's Ocean, edited by: Aoyama, M., Dickson, A. G., Hydes, D. J., Murata, A., Oh, J. R., Roose, P., and Woodward, E. M. S., Mother Tank, Tsukuba, Japan, 1–10, 2010.
Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys. Res., 111, C10013, https://doi.org/10.1029/2005JC003083, 2006.
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009.
Publications Copernicus
Download
Short summary
Recent variation in air–sea CO2 flux in the Arctic Ocean is focused. In order to understand the relation between sea ice retreat and CO2 chemistry, we conducted hydrographic observations in the Arctic Ocean in 2013. There were relatively high pCO2 surface layer and low pCO2 subsurface layer in the Canada Basin. The former was due to near-equilibration with the atmosphere and the latter primary production. Both were unlikely mixed by disturbance as large sea-ice melt formed strong stratification.
Recent variation in air–sea CO2 flux in the Arctic Ocean is focused. In order to understand the...
Citation
Share