The short-term combined effects of temperature and organic matter enrichment on permeable coral reef carbonate sediment metabolism and dissolution

Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Centre for Coastal Biogeochemistry, School of Environment, Science, and Engineering, Military Road Southern Cross University, Lismore 2480 NSW, Australia

Correspondence to: Coulson A. Lantz (coulsonlantz@gmail.com)

Received: 30 March 2017 – Discussion started: 28 April 2017
Revised: 11 September 2017 – Accepted: 28 September 2017 – Published: 1 December 2017

Abstract. Rates of gross primary production (GPP), respiration (R), and net calcification (G_{net}) in coral reef sediments are expected to change in response to global warming (and the consequent increase in sea surface temperature) and coastal eutrophication (and the subsequent increase in the concentration of organic matter, OM, being filtered by permeable coral reef carbonate sediments). To date, no studies have examined the combined effect of seawater warming and OM enrichment on coral reef carbonate sediment metabolism and dissolution. This study used 22 h in situ benthic chamber incubations to examine the combined effect of temperature (T) and OM, in the form of coral mucus and phytodetritus, on GPP, R, and G_{net} in the permeable coral reef carbonate sediments of Heron Island lagoon, Australia. Compared to control incubations, both warming (+2.4 $^\circ$C) and OM increased R and GPP. Under warmed conditions, R ($Q_{10} = 10.7$) was enhanced to a greater extent than GPP ($Q_{10} = 7.3$), resulting in a shift to net heterotrophy and net dissolution. Under both phytodetritus and coral mucus treatments, GPP was enhanced to a greater extent than R, resulting in a net increase in GPP / R and G_{net}. The combined effect of warming and OM enhanced R and GPP, but the net effect on GPP / R and G_{net} was not significantly different from control incubations. These findings show that a shift to net heterotrophy and dissolution due to short-term increases in seawater warming may be countered by a net increase GPP / R and G_{net} due to short-term increases in nutrient release from OM.

1 Introduction

Despite occupying only 7.5 % of the seafloor, coastal marine sediments are responsible for a large fraction (55 %) of global sediment organic matter oxidation (Middelburg et al., 1997). Of the coastal marine sediment environments, coral reef sediments are one of the most severely threatened by global climate change (Halpern et al., 2007). Rates of sediment autotrophic production (gross primary productivity; GPP) on coral reefs are generally greater than rates of heterotrophic metabolism (respiration; R; GPP / R > 1), such that the sediments are a net source of oxygen (Atkinson, 2011). Similarly, rates of sediment calcification/precipitation are generally greater than rates of sediment dissolution ($G_{\text{net}} > 0$) on most reefs under current ocean conditions, such that coral reef sediments on diel (24 h) timescales are net precipitating, resulting in the long-term burial of carbon in the form of calcium carbonate (Eyre et al., 2014; Anderson, 2015). This long-term production of calcium carbonate is an important component of reef formation and the creation of sandy cays (Atkinson, 2011). However, due to anthropogenically mediated processes such as sea surface temperature (SST) warming (Levitus et al., 2000) and coastal eutrophication (Fabricius, 2005), coral reef sediments may soon be subjected to elevated SSTs and excess loadings of OM (Rabouille et al., 2001). This could ultimately impact the balance in GPP / R and G_{net} in the sediment and potentially alter the long-term accumulation of carbonate material on coral reefs (Orlando and Yee, 2016).

Given the recent projections of SST increases on coral reefs of between 1.2 and 3.2 $^\circ$C by the end of this century
(IPCC, 2013), there are concerns that the net metabolic balance in coral reef sediments may shift away from net production and net calcification to a state of net heterotrophy and net dissolution (Pandolfi et al., 2011). While several coral reef studies have examined the response in individual calcifying organisms to increased seawater temperature \(T \) (e.g. John-son and Carpenter, 2012; Shaw et al., 2016), only one study (Tmnovsky et al., 2016) has examined the response in entire permeable coral reef carbonate sediments. Furthermore, the majority of warming studies on marine sediments have been performed ex situ in more poleward latitudes (temper-ate to arctic environments) over a wide range of tempera-tures \((2–30^\circ \text{C}; \text{e.g. Tait and Schiel, 2013; Hancke et al., 2014; Ashton et al., 2017)} \). The bacterial communities resi-ding in marine sediments generally display a hyperbolic temperature–production relationship where GPP increases with \(T \) \((+32 \% \text{ per } 1^\circ \text{C increase)} \) until an optimal rate is reached roughly \(+2–3^\circ \text{C}\) above naturally observed seasonal maxima. This \(T-\text{GPP} \) relationship then declines at higher tempera-tures \((+4–6^\circ \text{C); due to the deactivation of component reactions (Bernacch et al., 2001). In Arctic and temper-ate marine sediment communities, the increase in \(T \) can alter the balance between GPP and \(R \), with an observed shift to-wards net heterotrophy \((\text{GPP} / \text{R}<1; \text{e.g. Hancke and Glud, 2004; Weston and Joye, 2005}) \). Tmnovsky et al. (2016) found that warming also decreased GPP / R in coral reef sediments and reduced \(G_{\text{net}} \) due to enhanced sediment dissolution.

Ultimately, the magnitude of potential shifts in coral reef sediment GPP / R and \(G_{\text{net}} \) under global warming scenari-os will depend critically on the availability of organic matter \((\text{OM}) \) substrate for remineralisation (Ferguson et al., 2003; Rabalais et al., 2009). Carbonate sediment dissolu-tion is strongly controlled by the extent of OM decomposi-tion in the sediments (Andersson, 2015). Coral reefs are classically characterised as oligotrophic, i.e. relatively defi-cient in major inorganic nutrients (Koop et al., 2001). De-spite this classification, the relatively high rates of GPP \((1 \text{ to } 3 \text{ mol } \text{C m}^{-2} \text{d}^{-1}) \) for these ecosystems (Odum and Odum, 1955) are evidence of a tightly coupled nutrient cycling between autotrophs and heterotrophs. However, the balance in sediment metabolism on coral reefs may change in re-sponse to OM over-enrichment associated with eutrophica-tion (Bell, 1992). Coral reefs affected by eutrophication (e.g. Hawaii: Grigg, 1995; Indonesia: Edinger et al., 1998; Ja-mica: Mallela and Perry, 2007; Puerto Rico: Diaz-Ortega and Hernandez-Delgado, 2014) all exhibit elevated concentrations of OM in the water column \((\text{particulate OM: } 10–50 \mu \text{mol } \text{C } \text{L}^{-1}) \) and above-average rates of sedimentation \((5–30 \text{ mg } \text{cm}^{-2} \text{d}^{-1}) \). Elevated concentrations of OM and in-creased rates of terrestrially derived sedimentation on coral reefs can cause a decline in hard coral cover and a relative increase in macroalgal cover, resulting in an overall degrada-tion of coral reef habitat (Fabricius, 2005).

The amount of OM processed in coral reef sediments can be increased through several processes, two of which were simulated in this study: (1) through local phytoplank-ton blooms in the water column in response to the runoff of inorganic and organic nutrients and the eventual sediment deposition of dead phytoplankton, referred to herein as phytodetritus (Furnas et al., 2005), and (2) the release of coral mucus into the reef water column as a stress response of scleractinian corals to increased sedimentation and the sub-sequent sediment deposition of this bacteria-rich protein ma-trix (Ducklow and Mitchell, 1979). The sediment deposition of OM provides labile carbon substrate (and associated ni-trogen and phosphorous) for immediate consumption by au-totrophic and heterotrophic bacterial communities.

Studies which have examined the effect of increased concen-trations of OM, such as coral mucus (e.g. Wild et al., 2004a; 24 h) or coral spawn and phytodetritus (e.g. Eyre et al., 2008; 1 week), on coral reef sediment metabolism have shown a short-term increase in GPP / R, contrasting the results provided from short-term temperature studies on coral reef sediments, where GPP / R decreased (Tmnovsky et al., 2016; 24 h). Experimental additions of coral mucus from Acropora spp. on Heron Island, Australia \((\text{conducted only in the dark over } 12 \text{ h), induced a } \sim 1.5\text{-fold increase in R (Wild et al., 2004b) while additions of Fungia spp. mucus from a reef in Aqaba, Jordan (also conducted over } 12 \text{ h in the dark; Wild et al., 2005), showed a } \sim 1.9\text{-fold increase in R. OM associated with a mass coral spawning event (coral gametes and subsequent phytodetritus produced in the water column) on Heron Island, Australia, caused a } 2.5\text{-fold increase in sediment R and a } 4\text{-fold increase in sedi-ment GPP over the course of } 1 \text{ week (Glud et al., 2008). Unlike the short-term response in GPP / R to } T \text{, sediment metabolism remained net-autotrophic during the spawning event at Heron Island, with GPP / R ratios rising as high as } 2.5–3.0 \text{ (Glud et al., 2008), implying that nutrients recycled from OM stimulated GPP in excess of } R \text{ (Eyre et al., 2008) on relatively short timescales (hours to days). However, studies which have examined the effect of excess OM on coral reef sediment metabolism over longer timescales (months) have shown that, ultimately, GPP / R eventually shifts to net heterotrophy (e.g. Andersson, 2015; Yeakel et al., 2015; Muehllehner et al., 2016). This suggests that despite an initial OM-induced increase in GPP / R, the net long-term effect within reef sediments may be a preferentially heterotrophic recycling of nutrients released from organic matter degrada-tion. Altogether, questions remain as to whether a predicted temperature-driven shift to net heterotrophy will be exacer-bated or mitigated by the presence of excess organic matter filtered by coral reef sediments. There are, to date, no studies that have examined the effect of OM on coral reef sediment \(G_{\text{net}} \). The observed short-term \((24 \text{ h to } 1 \text{ week}) \) increase in GPP / R in response to OM would imply that sediment \(G_{\text{net}} \) may also increase given that coral reef sediments generally exhibit a positive GPP / R-\(G_{\text{net}} \) relationship (Cyrnak and Eyre, 2016), whereas the observed long-term (months) de-crease in GPP / R may also reduce sediment \(G_{\text{net}} \).
2 Methods

2.1 Study site

This study was conducted at Heron Island, Australia (23°27′ S, 151°55′ E), in November 2016. The island is situated near the Tropic of Capricorn, at the southern end of the Great Barrier Reef (GBR) and contains a ∼9 ha island surrounded by a ∼24 ha coral reef with an average hard coral cover of ∼39 % (Salmond et al., 2015). The study site was located on the leeward side of the reef flat, roughly 100 m from the island shore, in a sandy patch where water depth varies between ∼0.1 and 2.7 m due to semi-diurnal tidal changes. The site was predominately covered in permeable CaCO₃ sediments (∼63 %) with interspersed patches of hard coral dominated by Acropora spp. (Roelfsema and Roelfsema, 2002). The CaCO₃ sediment at this site has a ∼2:1 ratio of aragonite : high-magnesium calcite (Cyronak et al., 2013a). Sediment grain size at this site showed the following relative abundances at each listed size class (Cyronak et al., 2013b): 12.1 % > 2 mm, 30.5 % between 1 and 2 mm, 27.3 % between 500 µm and 1 mm, 14.1 % between 250 and 500 µm, 11.2 % between 125 and 250 µm, 4.2 % between 63 and 125 µm, and 0.6 % < 63 µm. For a more detailed overview of the sediment grain characteristics at this site, we direct the reader to Glud et al. (2008) and Cyronak et al. (2013a, b).

2.2 Experimental design

A total of four 22 h diel incubations were conducted during 5–12 November 2016 in advective benthic chambers. Benthic net primary production (NPP), gross primary productivity (GPP), respiration (R), and net calcification (Gnet) were compared under ambient (∼0.63 µmol C L⁻¹) and elevated concentrations of particulate organic matter (OM; additions of ∼21.3 µmol C L⁻¹ phytodetritus or ∼23.6 µmol C L⁻¹ coral mucus) at ∼28.2 and ∼30.6 °C in an orthogonal design. Eight chambers were used per incubation day, with each of the four OM–temperature combinations replicated in two randomly assigned chambers (Fig. 1). The first two incubations included two replicate chambers using phytodetritus crossed with temperature (6 and 7 November 2016), while the next two incubations included two replicate chambers using coral mucus crossed with temperature (9 and 11 November 2016). Incubations were started at sunset (18:00) and ended the following day at dusk (16:00). This allowed for a 2 h period (16:00–18:00) where chambers could be moved to a new area of sediment, closed, and heated to the desired temperature offset before beginning the next set of incubations.

2.3 Benthic chambers

Advective benthic chambers were constructed out of clear acrylic with a height of 33 cm and a diameter of 19 cm (Huet et al., 1992). A motorised clear disc in the top of the chamber was programmed to spin at a rate of 40 revolutions min⁻¹, which had previously been determined to induce an advection rate of ∼43 L m⁻² d⁻¹ at the study site (Glud et al., 2008). About 10–12 cm of the base of the cham-
Table 1. Concentrations of carbon (µmol C L\(^{-1}\)) and nitrogen (µmol N L\(^{-1}\)) and measured temperature (°C) in the control and treatment chambers. Values correspond to the mean ± SD.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Carbon (µmol C L(^{-1}))</th>
<th>Nitrogen (µmol N L(^{-1}))</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.63 ± 0.13</td>
<td>0.12 ± 0.08</td>
<td>28.2 ± 1.1</td>
</tr>
<tr>
<td>T</td>
<td>0.63 ± 0.13</td>
<td>0.12 ± 0.08</td>
<td>30.6 ± 1.0</td>
</tr>
<tr>
<td>PD</td>
<td>21.7 ± 1.0</td>
<td>2.3 ± 0.8</td>
<td>28.4 ± 1.0</td>
</tr>
<tr>
<td>T + PD</td>
<td>21.7 ± 1.0</td>
<td>2.3 ± 0.8</td>
<td>30.5 ± 0.9</td>
</tr>
<tr>
<td>CM</td>
<td>24.2 ± 1.1</td>
<td>1.5 ± 0.4</td>
<td>28.3 ± 0.8</td>
</tr>
<tr>
<td>T + CM</td>
<td>24.2 ± 1.1</td>
<td>1.5 ± 0.4</td>
<td>30.7 ± 1.1</td>
</tr>
</tbody>
</table>

Phytodetritus (PD) was injected into treatment chambers to achieve a concentration increase by ∼20 µmol C L\(^{-1}\), a value analogous to mean conditions observed on degraded eutrophic coral reefs, where water column concentrations can range from 10 to 50 µmol C L\(^{-1}\) (Fabricius, 2005; Diaz-Ortega and Hernandez-Delgado, 2014). Phytodetritus was produced from unfiltered seawater (6 L) collected from the coastal ocean adjacent to the SCU laboratories (Lennox Head, NSW, Australia) and containing naturally occurring assemblages of phytoplankton species common to the East Australian current. Phytoplankton growth in the collected seawater was stimulated by additions of 128 µmol L\(^{-1}\) NO\(_3\), 8 µmol L\(^{-1}\) PO\(_4\)\(^3-\), and 128 µmol L\(^{-1}\) H\(_2\)SiO\(_4\) (buffered by additions of 256 µmol L\(^{-1}\) of HCl), and a solution of trace metals and vitamins (F/1; Guillard, 1975). Total amounts of nutrients were chosen to allow for a community production of up to 850 µmol C L\(^{-1}\) assuming a classical C : N : P Redfield ratio of 116 : 16 : 1 and a N : Si requirement of diatoms of 1. After 1 week of incubation at 150 µmol quanta of PAR m\(^{-2}\) s\(^{-1}\) at 20°C, the phytoplankton community was concentrated to 1/50th the original volume (0.12 L) via gentle (>0.2 bar) vacuum filtration over GF/F filters and rinsed with artificial seawater to remove residual concentrations of dissolved organic and inorganic nutrients. The resulting phytoplankton concentrate (measured at 8.5 mmol C mL\(^{-1}\) and 0.9 mmol N mL\(^{-1}\) of particulate organic carbon (POC) and nitrogen (PON) respectively per 1 mL of PD concentrate; see Sect. 2.6 for details) was stored in the dark at 4.0 °C until experimental use (6 days). At the beginning of an incubation, 10 mL of the dead phytoplankton concentrate, referred to as PD hereafter, was injected into each treatment chamber (∼4 L volume), raising the concentration of carbon and nitrogen by ∼21.3 ± 1.0 µmol C L\(^{-1}\) and ∼2.2 ± 0.8 µmol N L\(^{-1}\) respectively (Table 1).

The amount of coral mucus (CM) added to the chambers was chosen to represent a reef-wide discharge based on reported average mucus secretion rates for Acropora spp. (4.8 L mucus m\(^{-2}\) d\(^{-1}\); Wild et al., 2004a), the dominant genus on the Heron Island reef flat. Mucus was collected from scattered branching coral fragments (Acropora spp.) using a non-destructive method whereby loose individual colonies naturally exposed to air during low tide were inverted so that gravity facilitated the pooling of secreted mucus through a cone filter into a 5 L beaker. This mucus was returned to the lab, particle filtered (5.0 µm) to remove the bulk of seawater, re-filtered to separate out particle carbonates, and stored in the dark at 4.0°C until experimental use.
(2 days). vNineteen-four millilitres of mucus was injected into each treatment chamber to simulate the equivalent reported Acropora spp. mucus secretion rate (4.8 L mucus m$^{-2}$ d$^{-1}$) for Heron Island given the average percent of this secreted mucus filtered by the sand (70%; Wild et al., 2004a) and the benthic area enclosed by each chamber (0.028 m2). Based on measured POC and PON concentrations of the mucus (1.2 mmol C mL$^{-1}$ and 0.08 mmol N mL$^{-1}$ respectively per 12 mL of CM concentrate; see Sect. 2.6) this represented an addition of $\sim 23.6 \pm 1.1 \mu$mol C L$^{-1}$ and $1.4 \pm 0.4 \mu$mol N L$^{-1}$ (Table 1).

2.6 Sample collection and analysis

Seawater samples (120 mL total) were extracted from the top of each chamber via two two-port valves using two 60 mL syringes without headspace at \sim12 h intervals (sunset, dawn, and dusk) and returned to the lab for immediate analysis and/or preservation. 10 mL of unfiltered seawater from each chamber was analysed for dissolved oxygen (DO; mg L$^{-1}$) with a Hach HQ30D meter and Luminiscent DO (LDO) probe. Samples for seawater total alkalinity (A_T; μmol kg$^{-1}$) were filtered (0.45 µm; Chanson and Millero, 2007) and stored in 100 mL plastic, airtight bottles for immediate analysis (<24 h). Samples for dissolved inorganic carbon (DIC; μmol kg$^{-1}$) were also filtered (0.45 µM) into the bottom of 6 mL vials with 5 mL overflow, poisoned (6 µL of saturated HgCl$_2$; Dickson et al., 2007) and crimped (rubber butyl septum).

Seawater A_T was analysed using a potentiometric titration method (Dickson et al., 2007) on a Metrohm 888 Titroline automatic titrator using \sim10 mL of weighed-in seawater per sample. DIC was analysed in triplicates on a Marianda AIR-Conflo V (see Eyre et al., 2016, for details). Seawater A_T and DIC were converted from μmol kg$^{-1}$ to mmol L$^{-1}$ using temperature- and salinity-dependent seawater density. The solute flux equation (Glud et al., 2008) was as follows:

$$ F = \frac{A \times \Delta t}{A_T}, \quad (1) $$

where F (mmol m$^{-2}$ h$^{-1}$) is the net flux in solute, ΔS (mmol L$^{-1}$) is the change in solute concentration, A (L) is the chamber volume, A_T (μmol kg$^{-1}$) is the total scale) were calculated from measured DO, and Δt (hours) is the time elapsed between seawater samplings. Rates of sediment net primary production (NPP), gross primary production (GPP), and respiration (R) were calculated from O$_2$ fluxes (mmol O$_2$ m$^{-2}$ h$^{-1}$), and rates of net sediment calcification (G_{net}) were calculated from A_T fluxes (mmol CaCO$_3$ m$^{-2}$ h$^{-1}$; Table 2). Both NPP and GPP are reported as positive values to represent flux of O$_2$ from the sediment into the chamber water column, whereas R is reported as a negative value to represent the flux of O$_2$ from chamber water column into the sediment. To calculate the GPP / R ratio, positive values of R were used. To determine the sensitivity of GPP and R to changes in temperature, the absolute difference in diel GPP and R (mmol O$_2$ m$^{-2}$ d$^{-1}$) between the control and warming treatments was divided by the increase in temperature (ΔT) (2.4 \pm 0.5 °C) to provide a mmol O$_2$ m$^{-2}$ d$^{-1}$ °C$^{-1}$ sensitivity metric. Additionally, to provide comparability with the literature and determine the numerical relationship between a 10 °C change in temperature and GPP and R, Q_{10} values were estimated for temperature treatments according to the following equation:

$$ Q_{10} = \left(\frac{M_2}{M_1} \right)^{10/\Delta T}, \quad (2) $$

where M_1 is the metabolic rate (GPP or R) at temperature T_1 (control) and M_2 is the metabolic rate (GPP or R respectively) at temperature T_2 (warming treatment), with $T_1 < T_2$. Prior to chamber additions, subsamples (1 mL, $n = 3$) were taken from the concentrated PD culture, CM, and the water column and analysed for particulate organic carbon (POC) and nitrogen (PON). These subsamples were filtered on pre-combusted 25 mm GF/F filters, dried at 60 °C, fumed with 12 M HCl to dissolve any particulate carbonates on the filter, and wrapped in pre-combusted tin capsules. These capsules were analysed for carbon (C) and nitrogen (N) using an elemental analyser (Thermo Flash ES) coupled to an isotope ratio mass spectrometer (Thermo Delta V PLUS) via a Thermo Conflo V (see Eyre et al., 2016, for details).
Table 2. The equations used in this study to calculate rates of sediment metabolism based on measured fluxes in dissolved oxygen (DO) and total alkalinity (AT; Eyre et al., 2011).

<table>
<thead>
<tr>
<th>Metabolic rate</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration (R)</td>
<td>Dark DO flux \times -1</td>
</tr>
<tr>
<td>Net primary production (NPP)</td>
<td>Light DO flux</td>
</tr>
<tr>
<td>Gross primary production (GPP)</td>
<td>NPP + R</td>
</tr>
<tr>
<td>GPP / R</td>
<td>GPP \times 12 \text{ (daylight hours)}/R \times 24 \text{ (total hours)}</td>
</tr>
<tr>
<td>Net calcification (G_{net})</td>
<td>\text{AT} \text{ flux} \times 0.5; positive values represent net calcification and negative rates represent net dissolution</td>
</tr>
</tbody>
</table>

2.8 Statistical analyses

Results are displayed as the mean ± standard deviation (SD). Data were organised as the hourly average for both day and night and were pooled together within each T, OM, and T + OM treatment where results did not significantly differ between incubations. All statistical analyses were performed with the SPSS statistics software (SPSS Inc. Version 22.0) running in a Windows PC environment, and the assumptions of normality and equality of variance were evaluated with graphical analyses of the residuals. To test for the effect of each treatment (T, PD, and CM) on respiration, photosynthesis, and calcification, measured R, NPP, GPP, and G_{net} were analysed using a repeated-measures three-way analysis of variance (ANOVA). In this model, temperature and OM (PD and CM) were fixed effects, the within-subject factor was time (days), and replicate chambers were a nested effect. To compare the significance of temperature and OM between and within treatment chambers, a one-way ANOVA model was used in which average seawater temperatures (°C) and POC and PON concentrations respectively were treated as the response variable. In these analyses, Bonferroni post hoc tests were used to conduct pair-wise comparisons between treatments.

3 Results

3.1 Measured seawater chemistry and sediment metabolism in control chambers

Temperatures measured in both the water column and chambers exhibited typical diel changes, and were slightly warmer in the controls (28.2 ± 1.3 °C) in comparison to the water column (−0.8 ± 0.5 °C; Fig. 2). Mean water column salinity throughout the experiment was 35.8 ± 0.1. Over the course of each diel incubation period, changes in water chemistry (Fig. 3) were driven by benthic metabolism. Control (C) chambers, over the diel cycle, were net autotrophic and net calcifying. C chambers were net dissolving at night and net calcifying during the day. Mean particles organic carbon (POC) and nitrogen (PON) concentrations in the four C chambers were 0.63 ± 0.1 μmol C L\(^{-1}\) and 0.12 ± 0.1 μmol N L\(^{-1}\) respectively. The DIC\(_{org}\) : O\(_2\) quotient for all treatments was 0.94 ± 0.09 on average and did not significantly differ from 1 (p < 0.05; Fig. 4), suggesting that sulfate reduction did not significantly contribute to the AT fluxes.

3.2 The effects of temperature on sediment metabolism

Mean seawater temperature in the C and temperature (T) treatments during the four incubation periods was 28.2 ± 1.1 and 30.6 ± 1.2 °C respectively (Table 1). Temperature differed between C and T treatments (F\(_{1,31}\) = 384.38, p < 0.05), but there was no significant difference between replicate chambers within each treatment (F\(_{1,31}\) = 0.76, p = 0.768). Temperature in all eight chambers exhibited typical diel changes throughout all four incubation periods, driven by sunlight and tidal changes in water depth (Fig. 2). Treatment chambers followed the same natural diel change measured in control chambers and maintained an average +2.4 ± 0.5 °C offset over the course of the study (Table 1).

During the fourth set of incubations, one T treatment was lost due to a broken heater and this chamber was treated as a third control. Seawater warming increased R (F\(_{1,31}\) = 260.38, p < 0.05), NPP (F\(_{1,31}\) = 192.17, p < 0.05), and GPP (F\(_{1,31}\) = 160.61, p < 0.05; Table 3, Fig. 5). Overall, warming decreased GPP / R (F\(_{1,31}\) = 79.02, p < 0.05) from a state of net autotrophy to net heterotrophy (Fig. 6). Mean calculated temperature sensitivity, averaged across T treatments from all four incubations, was 22.3 ± 3.8 mmol O\(_2\) m\(^{-2}\) d\(^{-1}\) °C\(^{-1}\) for R and 16.1 ± 2.8 mmol O\(_2\) m\(^{-2}\) d\(^{-1}\) °C\(^{-1}\) for GPP. Mean calculated Q\(_{10}\) values were 10.7 ± 3.1 for R and 7.3 ± 1.2 for GPP. Warmed chambers were net dissolving at night and net calcifying during the day. Overall, warming caused a net decrease in diel G_{net} (F\(_{1,31}\) = 122.82, p < 0.05) from a state of net calcification to net dissolution (Fig. 7).

3.3 The effects of organic matter on sediment metabolism

Mean POC and PON concentrations in the four phytochlo-tritus (PD) treatment chambers were 21.7 ± 1.0 μmol C L\(^{-1}\) and 2.3 ± 0.8 μmol N L\(^{-1}\) respectively (POC: PON ~ 9 : 1; Table 1). PD increased R (F\(_{1,15}\) = 16.77, p < 0.05), NPP (F\(_{1,15}\) = 245.86, p < 0.05), and GPP (F\(_{1,15}\) = 212.64, p < 0.05). Overall, PD caused a net increase in GPP / R (F\(_{1,15}\) = 13.92, p < 0.05; Table 3). Chambers treated with PD were net dissolving at night and net calcifying during the day. Overall, PD caused a net increase in diel G_{net} (F\(_{1,15}\) = 134.27, p < 0.001).
Table 3. Calculated respiration (R: mmol O$_2$ m$^{-2}$ h$^{-1}$), net primary productivity (NPP: mmol O$_2$ m$^{-2}$ h$^{-1}$), gross primary productivity (GPP: mmol O$_2$ m$^{-2}$ h$^{-1}$), the ratio of GPP / R, and net calcification (G_{net}: mmol CaCO$_3$ m$^{-2}$ h$^{-1}$) in the control and treatment chambers. Values correspond to the mean ± SD.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>R (mmol O$_2$ m$^{-2}$ h$^{-1}$)</th>
<th>NPP (mmol O$_2$ m$^{-2}$ h$^{-1}$)</th>
<th>GPP (mmol O$_2$ m$^{-2}$ h$^{-1}$)</th>
<th>GPP / R</th>
<th>Day G_{net} (mmol CaCO$_3$ m$^{-2}$ h$^{-1}$)</th>
<th>Night G_{net} (mmol CaCO$_3$ m$^{-2}$ h$^{-1}$)</th>
<th>Diel G_{net} (mmol CaCO$_3$ m$^{-2}$ h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.3 ± 0.5</td>
<td>1.9 ± 0.3</td>
<td>3.2 ± 0.4</td>
<td>1.31 ± 0.1</td>
<td>1.3 ± 0.2</td>
<td>-0.9 ± 0.2</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>T</td>
<td>-3.5 ± 0.4</td>
<td>2.9 ± 0.4</td>
<td>6.4 ± 0.5</td>
<td>0.91 ± 0.1</td>
<td>1.7 ± 0.2</td>
<td>-1.9 ± 0.2</td>
<td>-0.2 ± 0.1</td>
</tr>
<tr>
<td>PD</td>
<td>-2.6 ± 0.5</td>
<td>5.3 ± 0.5</td>
<td>7.9 ± 0.4</td>
<td>1.54 ± 0.1</td>
<td>2.8 ± 0.3</td>
<td>-1.5 ± 0.2</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>T + PD</td>
<td>-3.1 ± 0.5</td>
<td>4.7 ± 0.5</td>
<td>7.8 ± 0.5</td>
<td>1.27 ± 0.1</td>
<td>2.6 ± 0.3</td>
<td>-1.9 ± 0.2</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>CM</td>
<td>-2.0 ± 0.4</td>
<td>4.4 ± 0.4</td>
<td>6.4 ± 0.7</td>
<td>1.61 ± 0.2</td>
<td>2.4 ± 0.3</td>
<td>-1.3 ± 0.2</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>T + CM</td>
<td>-2.9 ± 0.4</td>
<td>4.6 ± 0.5</td>
<td>7.4 ± 0.5</td>
<td>1.25 ± 0.1</td>
<td>2.3 ± 0.4</td>
<td>-1.8 ± 0.3</td>
<td>0.2 ± 0.2</td>
</tr>
</tbody>
</table>

Figure 2. Water column parameters measured during the four incubations, each starting at sunset (18:00) and ending at the following day’s dusk (16:00). Data are presented from the first phase (Incubation 1 and 2) where phytodetritus was used as an organic matter (OM) treatment, and from the second phase (Incubation 3 and 4), where coral mucus was used as an OM treatment. Shaded grey bars represent night-time. (a) Mean temperature (°C) measured by Hobo temperature recorders that logged temperature at 15 min intervals during each incubation period. Data are pooled together as the mean from control (grey dots) and warming (black dotted line) treatments ($n = 4$ per incubation). Mean water column temperature ($n = 1$ per incubation) shown as a black dashed line. (b) Measured light intensity (µmol quanta m$^{-2}$ s$^{-1}$) in the water column (black line) and water height (m) during each incubation period (grey dashed line).

Mean POC and PON concentrations in the four coral mucus (CM) treatment chambers were 24.2 ± 1.1 µmol C L$^{-1}$ and 1.5 ± 0.4 µmol N L$^{-1}$ respectively (POC : PON ratio ~ 16 : 1). CM increased R ($F_{1,15} = 7.34$, $p < 0.05$), NPP ($F_{1,15} = 134.51$, $p < 0.05$), and GPP ($F_{1,15} = 99.24$, $p < 0.05$). Overall, CM caused a net increase in GPP / R ($F_{1,15} = 34.17$, $p < 0.05$; Table 3). Chambers treated with CM were net dissolving at night and net calcifying during the day. Overall, CM caused a net increase in diel G_{net} ($F_{2,22} = 100.61$, $p < 0.05$).
Figure 3. Water chemistry (mean ± SD) measured and calculated during the four incubations. Control (C), warming (T), phyto- detritus (PD), coral mucus (CM), and combination (T + PD, T + CM) treatments are averaged over the two incubations (and replicate chambers therein) in which each respective OM treatment was used (n = 4). Shaded grey bars represent the dark, and time of sampling is labelled on the x axis. (a) Measured fluxes in dissolved oxygen (DO; µmol L⁻¹). (b) Measured fluxes in total alkalinity (AT; µmol kg⁻¹). (c) Measured fluxes in dissolved inorganic carbon (DIC; µmol kg⁻¹). (d) Calculated changes in pH (total scale: pH_T). (e) Calculated fluxes in aragonite saturation state (Ω_ar).

Figure 4. A linear correlation between calculated changes in dissolved inorganic carbon (ΔDIC₂; µmol kg⁻¹) as a function of measured changes in dissolved oxygen (ΔDO; µmol L⁻¹) over each 12h sampling period from all chambers and incubations. To examine the variation in DIC due solely to photosynthesis and respiration (ΔDIC₂), changes in DIC were corrected for calcium carbonate precipitation/dissolution using the measured changes in total alkalinity (AT; 0.5 mol CO₂ : 1 mol AT).

3.4 The combined effects of temperature and organic matter on sediment metabolism

In the first two incubations, T + PD increased R (F₁,₁₅ = 46.4, p < 0.001), NPP (F₁,₁₅ = 16.31, p < 0.05), and GPP (F₁,₁₅ = 8.81, p < 0.05; Table 3). However, GPP / R in T + PD treatments did not significantly differ from control chambers (F₁,₁₅ = 2.75, p = 0.122). Chambers treated with T + PD were net dissolving at night and net calcifying during the day. Overall, diel Gₙₑᵗ in T + PD treatments did not significantly differ from control chambers (F₁,₁₅ = 0.70, p = 0.417).

In the last two incubations T + CM increased R (F₁,₁₅ = 7.75, p < 0.05), NPP (F₁,₁₅ = 17.19, p < 0.05), and GPP (F₁,₁₅ = 26.77, p < 0.05; Table 3). With a value of 1.21 ± 0.13, Gₙₑᵗ in T + CM treatments was again not significantly different from control chambers (F₁,₁₅ = 0.075). T + CM chambers were net dissolving at night (−1.8 ± 0.3 mmol CaCO₃ m⁻² h⁻¹) and net calcifying during the day (2.4 ± 0.4 mmol CaCO₃ m⁻² h⁻¹). Overall, 24 h diel Gₙₑᵗ in T + CM treatments was 0.2 ± 0.2 mmol CaCO₃ m⁻² h⁻¹, a change which was not significantly different from control chambers (F₁,₁₅ = 0.87, p = 0.368).

4 Discussion

4.1 The response in coral reef sediment metabolism to seawater warming

Under control conditions, rates of GPP, R, and Gₙₑᵗ were similar to those measured in advective benthic chambers simulating equivalent percolation rates (Table 4) over 24 h diel timescales. Furthermore, carbonate sediments were not au-
Figure 5. Mean sediment gross primary production (GPP: mmol O$_2$ m$^{-2}$ h$^{-1}$) and respiration (R: mmol O$_2$ m$^{-2}$ h$^{-1}$) in response to warming (+2.4 °C) and each OM treatment (phytodetritus and coral mucus). Control (C; n = 9) and warming (T; n = 7) treatments are averaged over all four incubations and the replicate chambers therein. Phytodetritus (PD), coral mucus (CM), and combination (T + PD, T + CM) treatments are averaged over the two incubations (and replicate chambers therein) in which each respective OM treatment was used (n = 4). Average measured rates ± SD are represented in white for GPP (positive) and grey for R (negative).

Figure 6. Ratios of sediment gross primary production (12h) to respiration (24h; GPP / R) in response to warming (+2.4 °C) and each OM treatment (phytodetritus and coral mucus). Control (C; n = 9) and warming (T; n = 7) treatments are averaged over all four incubations and the replicate chambers therein, while phytodetritus (PD), coral mucus (CM), and combination (T + PD, T + CM) treatments are averaged over the two incubations (and replicate chambers therein) in which each respective OM treatment was used (n = 4). Dashed grey line represents the divide between net heterotrophy and net autotrophy (GPP / R = 1), while the * indicates if the presented value is significantly different the control.

It should also be noted that the daytime incubations in this study were terminated at 16:00, 2 h before sunset (18:00), to allow time to move each chamber and establish new treatment conditions for the next set of incubations. It is therefore possible that the calculated daytime GPP was slightly over-estimated given that the sediments in these final 2 h before sunset generally exhibit a lower rate of oxygen production relative to the 06:00 to 16:00 time period due to a reduction in light intensity (Cyronak et al., 2013b). However, a comparison of the mean GPP in control chambers to prior chamber work at the same study site, where incubations lasted until sunset (Cyronak and Eyre, 2016; Table 4), shows that GPP in this study was lower. This suggests that temporal variability in light intensity, temperature, and other abiotic factors.
likely exerts a greater influence on GPP than a 2 h difference in incubation period.

In our experiments, seawater warming (+2.4 ± 0.5 °C) was within the projection of the IPCC RCP 8.5 (+2.2–2.7 °C). Under this elevated seawater temperature, R increased to a greater extent than GPP, shifting the sediments to net heterotrophy (GPP / R = 0.93) over the diel incubation period (Fig. 8). The decrease of GPP / R due to warming can be explained by the relatively lower temperature sensitivity value for GPP (16.1 ± 2.8 mmol O₂ m⁻² d⁻¹ °C⁻¹) compared to R (22.3 ± 3.8 mmol O₂ m⁻² d⁻¹ °C⁻¹). This is further supported by the relatively lower measured Q₁₀ value for GPP (7.3 ± 1.2) compared to R (10.7 ± 3.1), similar to those measured by Trnovsky et al. (2016) for GPP (3.1–4.1) and R (7.4 to 13.0). It is important to note that the established Arrhenius relationships in the literature suggest that development and growth rates should increase at a rate of 7–12 % °C⁻¹ of warming (Clarke, 2003), much lower than the observed 74 and 42 % increase in R and GPP respectively per 1 °C of warming in this study. However, recent work in the Antarctic by Ashton et al. (2017) on marine benthic assemblages showed that, in some species, the growth rate exhibited a 100 % increase per 1 °C of warming, yielding Q₁₀ values around 1000. Therefore, while the temperature sensitivity estimates reported in this paper and in Trnovsky et al. (2016) exceed the expected rate for biological reactions and enzyme activity, evidence exists in other benthic marine environments to support the notion that the impact of temperature on biochemical processes may be more complex than previously thought at the organism level (Ashton et al., 2017).

Overall, the response in GPP / R to temperature agrees with other studies showing that seawater warming preferentially enhances R to a greater degree than GPP in marine sediments (Hancke and Glud, 2004; Weston and Joye, 2005; Tait and Schiel, 2013). The decline in GPP / R in response to warmer seawater temperature may be a product of the differential ranges in activation energies for GPP and R (Yvon-Durocher et al., 2010), where R exhibits a stronger and more rapid physiological acclimation to warming compared to GPP during short-term temperature variations (Wiencke et al., 1993; Robinson, 2000). The observed 29 % decrease in GPP / R in response to warming leads to a net 109 % decrease in Gnet (relative to control chambers), resulting in a transition to net sediment dissolution over the diel incubation period (Fig. 8). This decrease in Gnet was most likely due to a
respiration-driven increase in porewater pCO_2 (e.g. Cyronak et al., 2013a), thereby decreasing pH and the mean porewater aragonite saturation state, as evidenced by decreasing water column levels (mean Ω_{ar} = −0.7 relative to control chambers). While rising T increases Ω_{ar} geochronically, with less than 0.03 units per degree of temperature increase, this effect is negligible and by far outweighed by biologically driven changes in Ω_{ar}, leading to an overall decrease. In summary, a warming of seawater by 2.4 °C decreased GPP / R by 0.38 units and G_{net} by 0.2 mmol CaCO$_3$ m$^{-2}$ h$^{-1}$ in the permeable calcium carbonate sediments at this study site on Heron Island. The decline in the GPP / R in response to warming implies that a greater fraction of the carbon fixed by autotrophs was remineralised by heterotrophic bacteria and released as CO$_2$, thus compromising the capacity of coral-reef-permeable carbonate sediments to remain net autotrophic at an elevated seawater T.

While a decline in marine sediment GPP / R in response to seawater warming has been previously reported in several studies (e.g. Woodwell et al., 1998; Hancke and Glud, 2004; Weston and Joye, 2005; Lopez-Urrutia and Moran, 2007), the response in G_{net} has only been examined by Trmovsky et al. (2016). It is important to note that these results should not be extrapolated beyond 2100, where SST rises above +2.4 °C. The T increase simulated in this study (+2.4 °C) was within the optimal temperature range (30.6 °C) of previously reported temperature–metabolism hyperbolic relationships in marine sediments (Yvon-Durocher et al., 2010). Given the nature of hyperbolic relationships a further increase in temperature will eventually have an opposite effect on sediment metabolism (net decrease in GPP and R; Weston and Joye, 2005). Thus, the temperature sensitivity reported here should not be extrapolated beyond 2.4 °C.

4.2 The response in coral reef sediment metabolism to organic matter enrichment

Increased concentrations of organic matter (OM), analogous to eutrophic conditions on degraded coral reefs, enhanced both GPP and R in the sediment, likely by releasing nitrogen and phosphorus via organic matter degradation. These results agree with prior work, where increased concentrations of OM were quickly aerobically degraded by bacteria within minutes (Maher et al., 2013) to hours (Ferrier-Pages et al., 2000) and enhanced GPP more than R (Glud et al., 2008; Eyre et al., 2008). While some of this OM was likely degraded in the water column, previous experiments (e.g. Wild et al., 2004b) have shown that the high permeability of carbonate sediments permits the transport of OM into the upper centimetres (1–4 cm) of the sand, where bacterial degradation rates can exceed those of the water column by a factor of 10–12 (Moriarty, 1985; Wilkinson, 1987).

Phytodetritus (PD) and coral mucus (CM) enhanced respiration rates 1.1- and 0.6-fold respectively which was a less pronounced increase in R than the 1.5-fold increase observed by Wild et al. (2004b) using the same Acropora spp. mucus at Heron Island. This difference may be due to the fact their study used almost 3 times more CM (~280 mL) per treatment than this study (94 mL). An increase in GPP / R to 1.7 one day following the deposition of coral spawning material at the same study site (Glud et al., 2008), was similar to the average increase in GPP / R to 1.6 observed under increased OM concentrations in this study. PD enhanced GPP and R to a greater degree than CM, which may be explained by the higher nitrogen content, or more precisely, the lower C / N ratio in the former. Particulate organic carbon additions differed by less than 10% between PD and CM treatments, whereas particulate organic nitrogen addition (N) was almost twice as high by PD compared CM. In general, bacterial communities responsible for the cycling of nutrients in sediments are thought to be nitrogen limited (Eyre et al., 2013). Given the relatively short timescale (24 h) in which the response in sediment metabolism to OM was measured, we reason that the PD was more rapidly mineralised than CM due to a higher N content in the added PD (Eyre et al., 2016).

To our knowledge, this is the first experiment to examine the short-term relationship between OM degradation and G_{net} in coral reef sediments. Our results show that increased concentrations of PD and CM both enhanced G_{net}. Most likely the increase in G_{net} was a product of the same biogeochemical mechanism influencing G_{net} under seawater warming, whereby changes in GPP / R modify porewater pCO_2 and thus Ω_{ar}. In the case of OM, a preferential enhancement of GPP over R resulted in an increase in Ω_{ar} (mean $\Omega_{ar} = +0.6$ relative to control chambers) and subsequent increase in G_{net} (+1.4 mmol CaCO$_3$ m$^{-2}$ h$^{-1}$ relative to control chambers). While the results presented here are the first to report a positive OM–G_{net} relationship specifically in permeable calcium carbonate sediments, a similar response has also been observed at ecosystem level in coral reefs (Yeakel et al., 2015), where increased offshore productivity in the Sargasso Sea over the course of several months lead to an increase in community G_{net} on the adjacent Bermuda coral reef flat. Interestingly, this increase in G_{net} in Bermuda coincided with a period of net heterotrophy on the reef. The difference in the G_{net} – GPP / R relationship between the data in this study (OM increased GPP / R and increased G_{net}) and those in Yeakel et al. (2015; OM decreased GPP / R and increased G_{net}) may be a result of the timescale of observation. This implies that, should elevated concentrations of OM persist for an extended period of time (weeks to months), the immediate preferentially phototrophically mediated recycling of nutrients, and associated increased GPP / R and G_{net} in coral reef sediments, may eventually shift to net heterotrophy despite the ability to maintain a positive G_{net}.
4.3 The response in coral reef sediment metabolism to a combination of seawater warming and organic matter enrichment

The combination of seawater warming and increased concentrations of OM, for both PD and CM, enhanced GPP (+17% relative to the temperature alone) and R (+11% relative to temperature alone) but countered the effect on GPP / R and G_{net} (no significant difference from the control). Given the effect of each of these treatments (T and OM) independently on sediment GPP / R and G_{net}, this result is not surprising. A decrease in GPP / R and G_{net} due to warming was countered by an increase in GPP / R and G_{net} due to an increased concentration of OM.

This finding raises questions within the context of each treatment, as mean SST on coral reefs will continuously rise from now until beyond 2100, consistently affecting sediment metabolism. However, organic matter enrichment of permeable coral reef carbonates is also likely to gradually increase due to enhanced algal production from elevated nutrients (Furnas et al., 2005), elevated terrestrial input of OM (Diaz-Ortega and Hernandez-Delgado, 2014) and enhanced mucus production due to enhanced terrestrial sedimentation (Alongi and McKinnon, 2005). As discussed above this long-term enrichment with OM will most likely make coral reef sediments more heterotrophic (and not more autotrophic as in this short-term study). However the subsequent response in G_{net} over longer timescales is less clear, as some work has shown that the degradation of organic matter can enhance sediment dissolution (Andersson, 2015), whereas other work (e.g. Yeakel et al., 2015) has shown that community calcification may actually increase. Therefore, combined with an increase in T, the effect of long-term enrichment of OM on GPP / R is likely to be additive (decrease GPP / R), but the long-term response in G_{net} still needs further examination.

Similarly, the effect of other, more persistent products of eutrophication, namely dissolved inorganic nutrients (DIN: NH_4^+, NO_3^-, PO_4^{3-}), on coral reef sediment GPP / R and G_{net} have yet to be studied and may become more frequent and persistent as coastal land use changes continue to facilitate the increased runoff of fertilisers (Koop et al., 2001). Consequently, the results presented here provide an estimation of the future short-term response in coral reef sediment GPP / R and G_{net} to warming (+2.4 °C) and eutrophication (PD and CM), but by no means have explored other potential warming- and eutrophication-mediated perturbations that continue to threaten coral reef ecosystems. Future work should consider varying durations (e.g. > 24 h) and forms of eutrophication (e.g. DIN) as well as a range of T, both within and beyond reported optimal ranges (> 2.4 °C), to better constrain our understanding of the potential feedback responses in coral reef sediment GPP / R and G_{net}.

5 Conclusions

This study suggests that seawater warming will shift GPP / R and G_{net} in permeable calcium carbonate coral reef sediments to a state of net heterotrophy and net dissolution respectively by the year 2100. In contrast, short-term eutrophication, and the subsequent production of OM in the form of phytodetritus and coral mucus, could enhance sediment GPP / R and G_{net}. The combined effect of seawater warming and increased concentrations of OM may additively enhance sediment GPP and R, but the net effects on GPP / R and G_{net} will likely counter one another on relatively short timescales of days. The future response in the net flux behaviour of CO$_2$ and O$_2$ in the coral reef sediment environment, and the consequent rate of carbon sequestration into the sediments, will likely depend on the relative frequency and duration of each perturbation. The effects of OM (e.g. phytoplankton growth, reef-wide mucus secretion) on sediment metabolism generally persist temporarily (days to weeks) relative to global warming, a constant process which will continue to occur throughout this century and beyond. Provided this ecological context and the findings from this study, we propose that increased concentrations of OM, in the form of phytodetritus and coral mucus, will increase G_{net} and GPP / R in the sediment on relatively short timescales. However, once seawater temperature on coral reefs rises 2.4 °C above the present-day mean, the immediate effect of OM on sediment metabolism will be compromised by a warming-mediated net decrease in G_{net} and GPP / R, thereby limiting the ability of permeable calcium carbonate sediments on coral reefs to accumulate calcium carbonate.

Data availability. Archived data are available for access on PANGAEA (https://doi.org/10.1594/PANGAEA.883559, Lantz et al., 2017b).

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We would like to thank Jacob Yeo for his assistance in the field. This research was funded by ARC Discovery Grant DP150102092 and conducted under GBRMPA permit number G16/38438.1.

Edited by: Carol Robinson
Reviewed by: Angelos Hannides and one anonymous referee

Shaw, E. C., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J.: Intraspecific variability in the response to ocean warming and acidification...