Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5359-2017
https://doi.org/10.5194/bg-14-5359-2017
Research article
 | 
30 Nov 2017
Research article |  | 30 Nov 2017

Species interactions can shift the response of a maerl bed community to ocean acidification and warming

Erwann Legrand, Pascal Riera, Mathieu Lutier, Jérôme Coudret, Jacques Grall, and Sophie Martin

Related authors

French coastal network for carbonate system monitoring: The CocoriCO2 dataset
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Eric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Emilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Saozig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-445,https://doi.org/10.5194/essd-2023-445, 2023
Revised manuscript accepted for ESSD
Short summary
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023,https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary

Related subject area

Biodiversity and Ecosystem Function: Marine
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024,https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024,https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024,https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024,https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024,https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary

Cited articles

Alsterberg, C., Eklof, J. S., Gamfeldt, L., Havenhand, J. N., and Sundback, K.: Consumers mediate the effects of experimental ocean acidification and warming on primary producers, P. Natl. Acad. Sci. USA, 110, 8603–8608, https://doi.org/10.1073/pnas.1303797110, 2013.
Amado-Filho, G. M., Maneveldt, G. W., Pereira, G. H., Manso, R. C. C., Bahia, R. G., Barros-Barreto, M. B., and Guimaraes, S.: Seaweed diversity associated with a Brazilian tropical rhodolith bed, Cienc. Mar., 36, 371–391, 2010.
Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S., and Tan, A.: Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence, Biogeosciences, 6, 1811–1823, https://doi.org/10.5194/bg-6-1811-2009, 2009.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O.: Ocean acidification causes bleaching and productivity loss in coral reef builders, P. Natl. Acad. Sci. USA, 105, 17442–17446, https://doi.org/10.1073/pnas.0804478105, 2008.
Asnaghi, V., Chiantore, M., Mangialajo, L., Gazeau, F., Francour, P., Alliouane, S., and Gattuso, J. P.: Cascading effects of ocean acidification in a rocky subtidal community, Plos One, 8, e61978, https://doi.org/10.1371/journal.pone.0061978, 2013.
Download
Short summary
In relation to ocean acidification and warming, most studies are focused on specific responses but do not consider species interactions. This study examined experimentally the response of a maerl bed community, composed of calcareous and fleshy algae and grazers, to ocean acidification and warming. Our results indicate that the response of marine communities to climate change will depend on the direct effects on species physiology and the indirect effects due to shifts in species interactions.
Altmetrics
Final-revised paper
Preprint