Research article
25 Oct 2017
Research article | 25 Oct 2017
CO2 efflux from soils with seasonal water repellency
Emilia Urbanek and Stefan H. Doerr
Related authors
Related subject area
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-1,https://doi.org/10.5194/bg-2019-1, 2019
Revised manuscript accepted for BG
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland
Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen
Biogeosciences, 15, 4447–4457, https://doi.org/10.5194/bg-15-4447-2018,https://doi.org/10.5194/bg-15-4447-2018, 2018
Short summary
In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography
Yi-Tse Weng, Chun-Chieh Wang, Cheng-Cheng Chiang, Heng Tsai, Yen-Fang Song, Shiuh-Tsuen Huang, and Biqing Liang
Biogeosciences, 15, 3133–3142, https://doi.org/10.5194/bg-15-3133-2018,https://doi.org/10.5194/bg-15-3133-2018, 2018
Short summary
Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data
Juha Mikola, Tarmo Virtanen, Maiju Linkosalmi, Emmi Vähä, Johanna Nyman, Olga Postanogova, Aleksi Räsänen, D. Johan Kotze, Tuomas Laurila, Sari Juutinen, Vladimir Kondratyev, and Mika Aurela
Biogeosciences, 15, 2781–2801, https://doi.org/10.5194/bg-15-2781-2018,https://doi.org/10.5194/bg-15-2781-2018, 2018
Short summary
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
Flux balance modeling to predict bacterial survival during pulsed-activity events
Nicholas A. Jose, Rebecca Lau, Tami L. Swenson, Niels Klitgord, Ferran Garcia-Pichel, Benjamin P. Bowen, Richard Baran, and Trent R. Northen
Biogeosciences, 15, 2219–2229, https://doi.org/10.5194/bg-15-2219-2018,https://doi.org/10.5194/bg-15-2219-2018, 2018
Short summary
Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Xiao Han, Cong Xu, Jennifer A. J. Dungait, Roland Bol, Xiaojie Wang, Wenliang Wu, and Fanqiao Meng
Biogeosciences, 15, 1933–1946, https://doi.org/10.5194/bg-15-1933-2018,https://doi.org/10.5194/bg-15-1933-2018, 2018
Short summary
Soil properties determine the elevational patterns of base cations and micronutrients in the plant–soil system up to the upper limits of trees and shrubs
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018,https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018,https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Cited articles
Bachmann, J., Guggenberger, G., Baumgartl, T., Ellerbrock, R. H., Urbanek, E., Goebel, M.-O., Kaiser, K., Horn, R., and Fischer, W. R.: Physical carbon-sequestration mechanisms under special consideration of soil wettability, J. Plant Nutr. Soil Sc., 171, 14–26, https://doi.org/10.1002/jpln.200700054, 2008.
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration record, Nature, 464, 579–582, https://doi.org/10.1038/nature08930, 2010.
Borken, W., Savage, K., Davidson, E. A., and Trumbore, S. E.: Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil, Glob. Change Biol., 12, 177–193, https://doi.org/10.1111/j.1365-2486.2005.001058.x, 2006.
Buczko, U., Bens, O., and Durner, W.: Spatial and temporal variability of water repellency in a sandy soil contaminated with tar oil and heavy metals, J. Contam. Hydrol., 88, 249–268, https://doi.org/10.1016/j.jconhyd.2006.07.002, 2006.
Bughici, T. and Wallach, R.: Formation of soil–water repellency in olive orchards and its influence on infiltration pattern, Geoderma, 262, 1–11, https://doi.org/10.1016/j.geoderma.2015.08.002, 2016.
Churaev, N. V.: Liquid and vapor flows in porous bodies: surface phenomena, Topics in chemical engineering, 13, 338, ISSN 0277-5883, Gordon and Breach Science Publishers, Amsterdam, 2000.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales, Glob. Change Biol., 18, 371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
de Jonge, L. W., Moldrup, P., and Schjønning, P.: Soil Infrastructure, Interfaces & Translocation Processes in Inner Space (“Soil-it-is”): towards a road map for the constraints and crossroads of soil architecture and biophysical processes, Hydrol. Earth Syst. Sci., 13, 1485–1502, https://doi.org/10.5194/hess-13-1485-2009, 2009.
Dekker, L. W. and Ritsema, C. J.: Fingerlike wetting patterns in two water-repellent loam soils, J. Environ. Qual., 24, 324–333, https://doi.org/10.2134/jeq1995.00472425002400020016x, 1995.
Dekker, L. W. and Ritsema, C. J.: Preferential flow paths in a water repellent clay soil with grass cover, Water Resour. Res., 32, 1239–1249, https://doi.org/10.1029/96WR00267, 1996b.
Dekker, L. W. and Ritsema, C. J.: Wetting patterns and moisture variability in water repellent Dutch soils, J. Hydrol., 231–232, 148–164, https://doi.org/10.1016/S0022-1694(00)00191-8, 2000.
Dekker, L. W., Doerr, S. H., Oostindie, K., Ziogas, A. K., and Ritsema, C. J.: Water repellency and critical soil water content in a dune sand, Soil Sci. Soc. Am. J., 65, 1667–1675, 2001.
Doerr, S. H.: On standardising the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils, Earth Surf. Proc. Land., 23, 663–668, https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6, 1998.
Doerr, S. H. and Thomas, A. D.: The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal, J. Hydrol., 231–232, 134–147, https://doi.org/10.1016/S0022-1694(00)00190-6, 2000.
Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.: Soil water repellency: its causes, characteristics and hydro-geomorphological significance, Earth-Sci. Rev., 51, 33–65, https://doi.org/10.1016/S0012-8252(00)00011-8, 2000.
Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., Shakesby, R. A., Leighton-Boyce, G., and Coelho, C. O. A.: Soil water repellency as a potential parameter in rainfall–runoff modelling: experimental evidence at point to catchment scales from Portugal, Hydrol. Process., 17, 363–377, https://doi.org/10.1002/hyp.1129, 2003.
Doerr, S. H. and Moody, J. A.: Hydrological effects of soil water repellency: on spatial and temporal uncertainties, Hydrol. Process., 18, 829–832, https://doi.org/10.1002/hyp.5518, 2004.
Doerr, S. H., Shakesby, R. A., Dekker, L. W., and Ritsema, C. J.: Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate, Eur. J. Soil Sci., 57, 741–754, https://doi.org/10.1111/j.1365-2389.2006.00818.x, 2006.
Feeney, D. S., Hallett, P. D., Rodger, S., Bengough, A. G., White, N. A., and Young, I. M.: Impact of fungal and bacterial biocides on microbial induced water repellency in arable soil, Geoderma, 135, 72–80, https://doi.org/10.1016/j.geoderma.2005.11.007, 2006.
Gaumont-Guay, D., Black, T., McCaughey, H., Barr, A., Krishnan, P., Jassal, R., and Nesic, Z.: Soil CO
2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance, Glob. Change Biol., 15, 1302–1319, https://doi.org/10.1111/j.1365-2486.2008.01830.x, 2009.
Goebel, M.-O., Bachmann, J., Woche, S. K., and Fischer, W. R.: Soil wettability, aggregate stability, and the decomposition of soil organic matter, Geoderma, 128, 80–93, https://doi.org/10.1016/j.geoderma.2004.12.016, 2005.
Goebel, M.-O., Woche, S. K., Bachmann, J., Lamparter, A., and Fischer, W.: Significance of wettability-induced changes in microscopic water distribution for soil organic matter decomposition, Soil Sci. Soc. Am. J., 71, 1593–1599, https://doi.org/10.2136/sssaj2006.0192, 2007.
Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A., and Guggenberger, G.: Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events?, Glob. Change Biol., 17, 2640–2656, https://doi.org/10.1111/j.1365-2486.2011.02414.x, 2011.
Hallett, P. D., Baumgartl, T., and Young, I. M.: Subcritical water repellency of aggregates form a range of soil management practices., Soil Sci. Soc. Am. J., 65, 184–190, https://doi.org/10.2136/sssaj2001.651184x, 2001.
Heinemeyer, A., Di Bene, C., Lloyd, A., Tortorella, D., Baxter, R., Huntley, B., Gelsomino, A., and Ineson, P.: Soil respiration: implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO
2 efflux rates in three ecosystems, Eur. J. Soil Sci., 62, 82–94, https://doi.org/10.1111/j.1365-2389.2010.01331.x, 2011.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V., Potočić, N., Waldner, P., Benham, S., Hansen, K., Merilä, P., Ponette, Q., de la Cruz, A. C., Roskams, P., Nicolas, M., Croisé, L., Ingerslev, M., Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.: Tree mineral nutrition is deteriorating in Europe, Glob. Change Biol., 21, 418–430, https://doi.org/10.1111/gcb.12657, 2015.
Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Agren, G. I., Sebastia, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., and Hartley, I. P.: Temperature sensitivity of soil respiration rates enhanced by microbial community response, Nature, 513, 81–84, https://doi.org/10.1038/nature13604, 2014.
Keizer, J. J., Doerr, S. H., Malvar, M. C., Ferreira, A. J. D., and Pereira, V. M. F. G.: Temporal and spatial variation in topsoil water repellency throughout a crop-rotation cycle on sandy soil, Hydrol. Process., 21, 2317–2324, https://doi.org/10.1002/hyp.6756, 2007.
Kieft, T. L., Amy, P. S., Brockman, F. J., Fredrickson, J. K., Bjornstad, B. N., and Rosacker, L. L.: Microbial abundance and activities in relation to water potential in the vadose zones of arid and semiarid sites, Microb. Ecol., 26, 59–78, https://doi.org/10.1007/bf00166030, 1993.
Kobayashi, M. and Shimizu, T.: Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events, Hydrol. Process., 21, 2356–2364, https://doi.org/10.1002/hyp.6754, 2007.
Kravchenko, A. N., Negassa, W. C., Guber, A. K., and Rivers, M. L.: Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics, Sci. Rep.-UK, 5, 16261, https://doi.org/10.1038/srep16261, 2015.
Lamparter, A., Bachmann, J., Goebel, M.-O., and Woche, S. K.: Carbon mineralization in soil: impact of wetting–drying, aggregation and water repellency, Geoderma, 150, 324–333, https://doi.org/10.1016/j.geoderma.2009.02.014, 2009.
Leighton-Boyce, G., Doerr, S. H., Shakesby, R. A., Walsh, R. P. D., Ferreira, A. J. D., Boulet, A., and Coelho, C. O. A.: Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal, Aust. J. Soil Res., 43, 269–280, https://doi.org/10.1071/SR04082, 2005.
Lozano, E., García-Orenes, F., Bárcenas-Moreno, G., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Morugán-Coronado, A., and Mataix-Beneyto, J.: Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest, J. Hydrol. Hydromech., 62, 101, https://doi.org/10.2478/johh-2014-0017, 2014.
Maier, M., Schack-Kirchner, H., Hildebrand, E. E., and Schindler, D.: Soil CO
2 efflux vs. soil respiration: implications for flux models, Agr. Forest Meteorol., 151, 1723–1730, https://doi.org/10.1016/j.agrformet.2011.07.006, 2011.
Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, A., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J.-A., Thomsen, I. K., and Chenu, C.: The moisture response of soil heterotrophic respiration: interaction with soil properties, Biogeosciences, 9, 1173–1182, https://doi.org/10.5194/bg-9-1173-2012, 2012.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models, Soil Biol. Biochem., 59, 72–85, https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Muhr, J., Goldberg, S., Borken, W., and Gebauer, G.: Repeated drying-rewetting cycles and their effects on the emission of CO
2, N
2O, NO, and CH
4 in a forest soil, J. Plant Nutr. Soil Sc., 171, 719–728, https://doi.org/10.1002/jpln.200700302, 2008.
Muhr, J., Franke, J., and Borken, W.: Drying–rewetting events reduce C and N losses from a Norway spruce forest floor, Soil Biol. Biochem., 42, 1303–1312, https://doi.org/10.1016/j.soilbio.2010.03.024, 2010.
Müller, K., Deurer, M., Kawamoto, K., Kuroda, T., Subedi, S., Hiradate, S., Komatsu, T., and Clothier, B. E.: A new method to quantify how water repellency compromises soils' filtering function, Eur. J. Soil Sci., 65, 348–359, https://doi.org/10.1111/ejss.12136, 2014.
Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., and Friedman, S. P.: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review, Adv. Water Resour., 30, 1505–1527, https://doi.org/10.1016/j.advwatres.2006.05.025, 2007.
Piccolo, A. and Mbagwu, J., S. C.: Role of hydrophobic components of soil organic matter in soil aggregate stability, Soil Sci. Soc. Am. J., 63, 1801–1810, https://doi.org/10.2136/sssaj1999.6361801x, 1999.
Piccolo, A., Spaccini, R., Haberhauer, G., and Gerzabek, M. H.: Increased sequestration of organic carbon in soil by hydrophobic protection, Naturwissenschaften, 86, 496–499, https://doi.org/10.1007/s001140050662, 1999.
Pivetz, B. E. and Steenhuis, T. S.: Soil matrix and macropore biodegradation of 2,4-D, J. Environ. Qual., 24, 564–570, https://doi.org/10.2134/jeq1995.00472425002400040002x, 1995.
Rey, A.: Mind the gap: non-biological processes contributing to soil CO
2 efflux, Glob. Change Biol., 21, 1752–1761, https://doi.org/10.1111/gcb.12821, 2015.
Ritsema, C. J. and Dekker, L. W.: Preferential flow in water repellent sandy soils: principles and modeling implications, J. Hydrol., 231–232, 308–319, https://doi.org/10.1016/S0022-1694(00)00203-1, 2000.
Robinson, D.: A comparison of soil-water distribution under ridge and bed cultivated potatoes, Agr. Water Manage., 42, 189–204, https://doi.org/10.1016/S0378-3774(99)00031-1, 1999.
Rodrigo, A., Recous, S., Neel, C., and Mary, B.: Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models, Ecol. Model., 102, 325–339, https://doi.org/10.1016/S0304-3800(97)00067-7, 1997.
Shakesby, R. A., Wallbrink, P. J., Doerr, S. H., English, P. M., Chafer, C., Humphreys, G. S., Blake, W. H., and Tomkins, K. M.: Distinctiveness of wildfire effects on soil erosion in south-east Australian eucalypt forests assessed in a global context, Forest Ecol. Manag., 238, 347–364, https://doi.org/10.1016/j.foreco.2006.10.029, 2007.
Stoof, C. R., Moore, D., Ritsema, C. J., and Dekker, L. W.: Natural and fire-induced soil water repellency in a Portuguese shrubland, Soil Sci. Soc. Am. J., 75, 2283–2295, https://doi.org/10.2136/sssaj2011.0046, 2011.
UK Forest Research: http://www.forestry.gov.uk/fr/INFD-6ZWE9R, last access: 3 March 2017, 2017a.
UK Forest Research: http://www.forestry.gov.uk/fr/INFD-6ZWE5C, last access: 3 March 2017, 2017b.
UK Met Office: http://www.metoffice.gov.uk/climate/uk/summaries/2013/annual/regional-values, last access: 3 March 2017, 2017a.
UK Met Office: http://www.metoffice.gov.uk/public/weather/climate/u126rmfgc#?region=easternengland, last access: 3 March 2017, 2017b.
Urbanek, E. and Shakesby, R. A.: Impact of stone content on water movement in water-repellent sand, Eur. J. Soil Sci., 60, 412–419, https://doi.org/10.1111/j.1365-2389.2009.01128.x, 2009.
Urbanek, E., Walsh, R. P. D., and Shakesby, R. A.: Patterns of soil water repellency change with wetting and drying: the influence of cracks, roots and drainage conditions, Hydrol. Process., 29, 2799–2813, https://doi.org/10.1002/hyp.10404, 2015.
Vanguelova, E. I., Benham, S., Pitman, R., Moffat, A. J., Broadmeadow, M., Nisbet, T., Durrant, D., Barsoum, N., Wilkinson, M., Bochereau, F., Hutchings, T., Broadmeadow, S., Crow, P., Taylor, P., and Durrant Houston, T.: Chemical fluxes in time through forest ecosystems in the UK – Soil response to pollution recovery, Environ. Pollut., 158, 1857–1869, https://doi.org/10.1016/j.envpol.2009.10.044, 2010.
Vinther, F. P., Eiland, F., Lind, A. M., and Elsgaard, L.: Microbial biomass and numbers of denitrifiers related to macropore channels in agricultural and forest soils, Soil Biol. Biochem., 31, 603–611, https://doi.org/10.1016/S0038-0717(98)00165-5, 1999.
Waldner, P., Marchetto, A., Thimonier, A., Schmitt, M., Rogora, M., Granke, O., Mues, V., Hansen, K., Pihl Karlsson, G., Žlindra, D., Clarke, N., Verstraeten, A., Lazdins, A., Schimming, C., Iacoban, C., Lindroos, A.-J., Vanguelova, E., Benham, S., Meesenburg, H., Nicolas, M., Kowalska, A., Apuhtin, V., Napa, U., Lachmanová, Z., Kristoefel, F., Bleeker, A., Ingerslev, M., Vesterdal, L., Molina, J., Fischer, U., Seidling, W., Jonard, M., O'Dea, P., Johnson, J., Fischer, R., and Lorenz, M.: Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe, Atmos. Environ., 95, 363–374, https://doi.org/10.1016/j.atmosenv.2014.06.054, 2014.
Wallach, R. and Jortzick, C.: Unstable finger-like flow in water-repellent soils during wetting and redistribution – the case of a point water source, J. Hydrol., 351, 26–41, https://doi.org/10.1016/j.jhydrol.2007.11.032, 2008.
White, N. A., Hallett, P. D., Feeney, D., Palfreyman, J. W., and Ritz, K.: Changes to water repllence of soil caused by the growth of whit-rot fungi: studies using a novel microcosm system., FEMS Microbiol. Lett., 184, 73–77, https://doi.org/10.1111/j.1574-6968.2000.tb08993.x, 2000.
Woche, S. K., Goebel, M. O., Kirkham, M. B., Horton, R., Van der Ploeg, R. R., and Bachmann, J.: Contact angle of soils as affected by depth, texture, and land management, Eur. J. Soil Sci., 56, 239–251, https://doi.org/10.1111/j.1365-2389.2004.00664.x, 2005.
Yan, Z., Liu, C., Todd-Brown, K. E., Liu, Y., Bond-Lamberty, B., and Bailey, V. L.: Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils, Biogeochemistry, 131, 121–134, https://doi.org/10.1007/s10533-016-0270-0, 2016.
York, C. A. and Canaway, P. M.: Water repellent soils as they occur on UK golf greens, J. Hydrol., 231–232, 126–133, https://doi.org/10.1016/S0022-1694(00)00189-X, 2000.
Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P. D., Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, P. A., Trimmer, M., Woodward, G., and Allen, A. P.: Reconciling the temperature dependence of respiration across timescales and ecosystem types, Nature, 487, 472–476, https://doi.org/10.1038/nature11205, 2012.